ADMS - Automatic Device Model Synthesizer
Laurent Lemaitre', Colin McAndrewz, Steve Hamm®
SPS - Motorola
laurent.lemaitre @ motorola.com, colin.mcandrew @motorola.com; steve.hamm @motorola.com
'Geneva - Switzerland, “Tempe - Arizona, *Austin - Texas

Abstract

This paper presents ADMS, a new open-source tool that
supports automatic synthesis of compact models into circuit
simulators. ADMS takes as input Verilog-AMS compact
model descriptions and generates C code that conforms to
- circuit simulator interfaces. ADMS supports the simulators
Mica, Spectre, and HSIM, and has been used to implement
the SP and SSIM MOSFET models, the VBIC BJT model,
and the R3 resistor model, the last two including self-heating.

Introduction

Implementing compact device models (e.g. BSIM [1] and
VBIC [2]) into circuit simulators requires a large amount of
work. Much of this is tedious, error-prone, manual
implementation of low-level code, and (apart from making a
model available) is a non-value-added task as far as a model
developer is concerned. The latest BSIM code consists of 21
different files, consisting of almost 20,000 lines of C code
tied to implementation in one specific simulator.

Understanding the details of, and dependencies between
sections of, code this large is a daunting task that has a very
serious ramification. It erects a huge barrier to developing,
implementing, testing, and sharing model improvements.
Also, the model code cannot be easily used just by itself, but
must be compiled and linked into a simulator.

ADMS addresses these issues. It has been designed to make
implementation of compact models simple, efficient, and
robust. It integrates a built-in symbolic derivative calculator.
Today it supports C code generation for the Abstract
Programming Interface (API) of three different simulators,
Spectre [3], Mica [4], and HSIM [5], and support for more is
under development. The specification of the code generator
is written in XML, the Extensible Markup Language [6]. It
can be modified without the need to recompile ADMS source
code. This simplifies adding API specification of other
simulators to ADMS.

Other approaches similar. to ADMS have been considered
recently [7][8]. In both approaches the specification of a
compact model is in a language specifically designed for this
purpose. Using one of the approaches requires learning a new
modeling language. One has to install specific tools to be
able to check the validity of a model, so these are not generic
approaches, and inhibit widespread model dissemination and
sharing.

ADMS uses Verilog-AMS [9]. This language was designed
for analog and mixed-signal systems. It can be judiciously
re-used for the description of compact models. The
constructs used in the Verilog-AMS language are intuitive
and easy to learn, and the language is standard and supported
by many simulators, e.g. [3] [4].

Verilog-AMS allows models to be defined hierarchically.
This allows model developers to increase the readability of
their code, and simplifies the sharing of blocks of code
between different device models (e.g. for junction diodes).

A major advantage of the ADMS approach is that it allows
Verilog-AMS simulators to be used to check the validity of a
compact model prior to implementation into simulators. This
significantly helps model development, as all simulation
capabilities, including DC, AC, noise, transient, etc., are
directly available for the Verilog-AMS code.

The format used by ADMS to describe a compact model can
be used as a de facto standard to share new ideas and model
code among device modeling engineers. No particular
programming language skills are needed to develop or
understand the syntax of the model definition.

Overview of ADMS code

A. Overview

Fig. 1 gives an overview of the interactions between ADMS,
the Verilog-AMS source code description, and target circuit
simulators.

The model is specified in Verilog-AMS. ADMS parses the
source code and creates an XML internal data tree that
mirrors the Verilog-AMS model description. Plug-in
applications process the XML internal data representation.
Different outputs can then be obtained from the initial
Verilog-AMS description. Formatting of the output can be
specified in XML. The APIs of circuit simulators have been
partially translated into XML. This way the update of
simulator-specific API versions can be done without the need
to recompile the ADMS source code.

Since many simulators embed Verilog-AMS parsers this
configuration allows testing of model descriptions “off-line,”
and enables verification of model implementation in the
same simulation environment.

3-3-1

0-7803-7250-6/02/$10.00 © 2002 IEEE

—

IEEE 2002 CUSTOM INTEGRATED CIRCUITS CONFERENCE

27

DTD-based
validation

parsing
Internal
data

v

XML Code

~

enerator
SPgeciﬁcauon " (;ode generator Pli tgh.el;s
CGceode documentation
Testing - Mica test-benches
prior implementation » - Spectre
. - HSIM
- ADS (future)

Fig. 1 Interactions between ADMS components

B. ADMS code implementation

ADMS has been implemented in the C language. It is based
on open-source C library Glib [10]. Glib is a utility library
that provides many useful data types such as n-ary trees,
string manipulation, and a simple XML subset parser. The
ADMS code has been written in an object-oriented style. The
coding design work has been made easier by the use of
Gobject, the native object system of Glib.

The choice of using an open-source library as the building
framework of ADMS was driven by the desire to. make
ADMS source code freely available to the device modeling
community.

C. Internal Data Representation

The main data representations used in ADMS are based on
XML, which is the universal format for structured documents
and data on the worldwide web [6]. XML provides a large set
of technologies that simplify the design of robust, re-usable
code.

XML offers a simple way to validate internal data. Rules that
shape valid data are written in a subset of XML. The set of
rules forms the so-called Document Type Definition (DTD).
Fig. 2 shows the complete DTD that defines the internal data
format implemented by ADMS. Embedding of an external
DTD is possible. This feature favors the re-use of well-
established formats. For instance, MathML [11] has been
adopted for the formatting of mathematical expressions.

Technologies built around XML give a powerful means to
manipulate XML data.

<!-- DTD ADMS DATA STRUCTURE -->
<!-- RE_USE OF MATHML2 DTD -->
<!ENTITY % math SYSTEM ". /mathmi2.dtd" >
%omath;
<!-- LOCAL ENTITIES -->
<!ENTITY % atomic)
"(assignment|contribution|conditional|whilejfor)" >
<!ENTITY % code "(%atomic;|block)" >
<!ENTITY % class "(node|branchjvariable|parameter|function)” >
<!-- START OF THE DTD -->
<!ELEMENT XVeriloga (discipline[nature{device)+ >
<!-- DISCIPLINE/NATURE SECTION -->
<!ELEMENT discipline EMPTY >
<!ELEMENT nature EMPTY >
<!-- DEVICE DECLARATION SECTION -->
<!ELEMENT device (name,declaration,analog) >
<!ELEMENT declaration .
(1.terminal|l.node|l. variable|l.branch|l.parameterjadms)* >
<!ELEMENT l.terminal (s.terminal)* >
<!ELEMENT s.terminal (name) >
<!ELEMENT l.node (s.node+) >
<!ATTLIST l.node flow (inputjoutputjinout) inout’>
<!ATTLIST l.node discipline CDATA ‘electrical’ >
<!ELEMENT s.node (name) >
<!ELEMENT l.parameter (s.parameter)* >
<!ATTLIST l.parameter type (reallinteger) real’>
<!ELEMENT s.parameter (name,default?,l.range?) >
<!ELEMENT L variable (s.variable)* >
<!ATTLIST l.variable type (realjinteger) #REQUIRED >
<!ELEMENT s.variable (name) >
<!ELEMENT L.branch (s.branch)* >
<!ELEMENT s.branch (branch.p,branch.n?,name) >
<!ELEMENT lrange (s.range+) >
<!'ELEMENT s.range (math) >
<!ATTLIST s.range type (fromfexclude) #REQUIRED >
<!-- DEVICE ADMS SECTION ->
<!ELEMENT adms (attribute+,class,name) >
<!ELEMENT class (name) >
<!ELEMENT attribute (key,value) >
<!ELEMENT key (name) >
<!ELEMENT value (math|%code;) >
<!-- DEVICE ANALOG SECTION -->
<!ELEMENT analog (block) >
<!ELEMENT block (name?,(%code;)+) >
<!ELEMENT conditional
(conditional.if,conditional.then,conditional.else?) >
<!ELEMENT while (while.test,while.code) >
<!'ELEMENT while.test (math) >
<!ELEMENT while.code %code; >
<!ELEMENT for (for.init,for.test,for.post,for.code) >
<!ELEMENT for.init (assignment) >
<!ELEMENT for.test (math) >
<!'ELEMENT for.post (assignment) >
<!ELEMENT for.code %code; >
<!ELEMENT conditional.if (math) >
<!ELEMENT conditional.then %code; >
<!ELEMENT conditional.else %code; >
<!ELEMENT default (math) >
<!'ELEMENT assighment (name,math) >
<!ELEMENT contribution (branch,math) >
<!ELEMENT branch (name,branch.p,branch.n?) >
<!ELEMENT branch.p (name) >
<!ELEMENT branch.n (name) >
<!—general name -->
<!ELEMENT name (#PCDATA) >
<!ELEMENT discipline_name (name) >

Fig. 2 Complete DTD used by ADMS

28 - 3-3-2

For instance Xpath [12] is a subset of XML that defines the
way XML data are traversed. Transformation scripts can be
written in XSLT [13], a subset of XSL. XSLT scripts are part
of the implementation of the circuit simulator code
generators.

Device Model Description

A. Example

Fig. 3 gives a complete example of a Verilog-AMS
description of a simple resistor model.

Verilog-AMS has some restrictions that prevent it from
completely. describe compact models, and details of how they
should be implemented as built-in models in circuit
simulators. For instance, Verilog-AMS does not distinguish
between model parameter and instance parameters. Section A
shows how it is still possible to “pass” this concept to ADMS
while not breaking the Verilog-AMS validity of the model
description. The macros model and instance are set to void in
Verilog-AMS mode. Both macros are redefined in Section B.
When ADMS reads the model description, definitions of
Section B override previous definitions, and extra
information is passed to ADMS. Verilog-AMS simulators do
not see the extra information and parse the model description
correctly. The macros “info, “spicename, “node_spicename
and “flag work in a similar way.

The CINITIAL_MODEL and CINITIAL_INSTANCE
keywords mark code executed during non-bias dependent
(e.g. geometry and/or temperature dependent) updates of
model and instance parameters. The keyword "LOAD marks
code executed for the evaluation of current flows and voltage
potentials. The keyword "FINAL marks code executed after
.convergence of a circuit. This helps speed up the code
execution of built-in models. For example, computation of
power dissipation does not need to be done after each bias
dependent Newton iteration during convergence.

B. Hierarchy

Verilog-AMS offers the possibility to define models
hierarchically. Fig. 4 gives an excerpt of the code used for
the description of the new MOSFET model SP [14]. A
hierarchical definition of the model improves the readability
of the code, and allows easy substitution or interchange of
sub-blocks of models. In SP the extrinsic diodes are just
standard models. These elements can easily be replaced by
similar model elements from different sources. Verilog-AMS
allows passing parameter value by name between different
block levels, facilitating the plug-in of sub-model
descriptions to a top-level model description. In Fig. 4 values
of the top-level parameters JCTareaBD and JCTareaBS are
passed to the internal diode parameter JCTarea.

// Example of Compact Model Specification
‘include "discipline.h"

‘define KELVIN 273.15

// SECT. A - Usefull declarations
‘define INIT_MODEL @initial_step
‘define INIT_INSTANCE @initial _step
‘define LOAD /* not supported */

‘define FINAL_STEP @final_step
‘define node_spicename(node,text)
‘define model(param)

‘define instance(param)

‘define info(param,text)

‘define spicename(param,text)
‘define flag(param,value)

module R(p, n);

// SECT. B - ADMS support
‘include "R.adms"

/I SECT. C - Node declaration */
inout p, m;
electrical p, n;

‘node_spicename(p, anode")
‘node_spicename(n, "cathode")

// SECT. D - Model Parameter Declaration
parameter real rsh=1.0 from (0.0:inf);
‘model(rsh) ‘info(rsh,"sheet res")
‘flag(rsh,"DEFAULT"|"ASK")
parameter real tc1=1.0 from (0.0:inf);
‘model(tcl) ‘info(tcl,"temp. coeff.")
‘flag(tcl,"DEFAULT"|"ASK")
parameter real tnom=25.0;

‘model(tnom) ‘info(tnom,"nom. Temp.")
‘flag(tnom,"DEFAULT"|"ASK")

// SECT. E - Instance Parameter Declaration
parameter real w=1.0 from (0:inf);
‘instance(w) ‘info(w,"width") ‘flag(w,"DEFAULT"|"ASK")
parameter real I=1.0 from (0:inf);
‘instance(l) ‘info(l,"length") ‘flag(l,"DEFAULT"|"ASK")

// SECT. F - Variable Declaration
real tdiff; ‘flag(tdiff,"ASK")
real rnom, r_t; ‘flag(rnom,"ASK") ‘flag(r_t,"ASK")
real i, power; ‘flag(i,"ASK") ‘flag(power,"ASK")
analog begin

/ SECT. G - Model Update

‘INITIAL_MODEL begin
tdiff = $Stemperature - (‘KELVIN+tnom);
end

// SECT. H - Instance Update

‘INITIAL_INSTANCE
begin
rmom = rsh * Vw;
r_t=rnom * (1.0 + tc1 *tdiff);

end
// SECT. I - Evaluation and Load
‘LOAD
begin
i=V(p,n)r_t;
I(p,n) <+ i;
end
// SECT. J - at final step
‘FINAL_STEP
begin
power = V(p,n)*i;
end
end
endmodule

Fig. 3 Verilog-AMS description of simple resistor model

3-3-3

‘include "StandardExtrinsicJunction.va”
‘include "SPintrinsic.va"
module SP(dnode,gnode,snode,bnode);

SPintrinsic

#(
/f model parameter mapping
TOX (TOX),

// instance parameter mapping
W (W),

1,

) SP (dpnode,gnode,spnode,bnode);
StandardExtrinsicJunction
#(
// model parameter mapping
JCTis (JCTis),

// instance parameter mapping
l.JCTarea (JCTareaBD),l

) JCTbd(dpnode,bnode);
StandardExtrinsicJunction

#(

// model parameter mapping

JCTis (JCTis),

// instance parameter mapping
|.JCTarea (JCTareaBS), i

) JCTbs(spnode,bnode);

enc.l.r;mdule
Fig. 4 Hierarchical model description

C. Recent Results

ADMS has been used to implement several models in one or
more simulators. The SSIM MOSFET model [15] has been
implemented in Spectre and HSIM. An accurate non-linear
3-terminal resistor model R3, based on [16] with some
extensions including self-heating, has been implemented in
Mica. The VBIC BJT model, with self-heating, has also been
implemented in Mica. The new MOSFET model SP [14] is
currently being implemented into Spectre.

D. Speed Efficiency

In order to measure the speed efficiency of ADMS-
implemented models versus manually implemented models,
SSIM was re-implemented into MICA using ADMS (it
already existed as a hand-coded built-in model). The
description of the model is about 3000 lines of code. The
automatically generated ADMS implementation is about
20% slower than the hand coded version.

Future Work

A primary goal of ADMS is to propose a standard for the
description of compact models. Proposals to the Verilog-
AMS Language Reference Committee will be made to
include features useful for the complete description of a
compact model in Verilog-AMS.

XML specifications for the interfaces for additional circuit
simulators are being developed.

Conclusion

This paper presented a new tool ADMS for automatic
implementation of compact models in circuit simulators.
ADMS has been successfully used for the integration of new
device models into Mica, Spectre and HSIM.

Compact model standardization is of great benefit to the
semiconductor industry. However, a continued reliance on
hand coding in low level languages is a huge barrier to model
improvement and dissemination. Defining models in a
standard high-level language like Verilog-AMS, and
automatically generating efficient, robust, correct-by-
construction code, is a big step forward in modeling.

Acknowledgments

The authors acknowledge the help and suggestions of Surya
Veeraraghavan, Chip Workman, Kiran Gullapalli, Steve
Beckerich, Jim Victory, Nathan Finkelstein, Kristin Beggs
and Dan Feng.

References

[1] Y. Cheng and C. Hu, “MOSFET Modeling & BSIM3 User’s
Guide,” Kluwer Academic Publisher, 1999.

[2] C. C. McAndrew et al., “VBIC95, The Vertical Bipolar Inter-
Company Model,” IEEE J. Solid-State Circuits, vol. 13, no.
10, pp. 1476-1482, Oct. 1996.

[31 SPECTRE CMI Reference Manual, Cadence Design System,
1995.

[41 MICA Device Programming Interface, Documentation and
Programmer’s Guide, Motorola Internal Document, 1998

[S]1 HSIM User Guide, NASSDA Corporation, 2001.

[6] Extensible Markup Language (XML), http://www.w3.org/XML

[7]1 R. V. H. Booth, “An Extensible Compact Model Description
Language and Compiler,” Proc. IEEE BMAS, pp. 39-44, Oct.
2001.

[8] M. Zorzi, N. Speciale, G. Masetti, “Automatic embedding of a
ferroelectric capacitor model in Eldo,” Proc. IEEE BMAS, pp.
97-101, Oct. 2001.

[9] Verilog-AMS Language Reference Manual, Open Verilog
International, 1999.

[10] Glib Reference Manual,
http://developer.gnome.org/doc/APl/glib/index.htmi

[11] Mathematical Markup Language, http://www.w3.org/Math

[12) XML Path Language (XPath), http://www.w3.org/TR/xpath

[13] XSL trarisformations (XSLT), http://www.w3.org/TR/xslt

[14] G. Gildenblat, N. Arora, R. Sung, and P. Bendix, “Scalable
Surface Potential Based Compact MOSFET Model,” Proc.
International Semiconductor Device Research Symposium, p.
333, 1997

[15] S. Veeraraghavan, "SSIM: A New Charge Based MOSFET
Model," presented at the MCNC Circuit Simulation Workshop,
Nov. 1990.

[16] R. V. H. Booth and C. C. McAndrew, “A 3-terminal model for
diffused and ion-implanted resistor,” IEEE Trans. Electron
Devices, vol. 44, no 5, pp. 809-814, May 1997.

30 3-3-4

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

