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Abstract— This article presents the design of a dual-mode
V-band power amplifier (PA) that enhances the efficiency at
power back-off (PBO) using load modulation. The PA utilizes
a reconfigurable two-/four-way power combiner to enable two
discrete modes of operation–full power and back-off power. The
power combiner employs two techniques to further improve the
PA efficiency at PBO: 1) usage of transformers with non-uniform
turns ratios to reduce the difference in impedance presented to
the PA cores between the two modes and 2) utilize a proposed
switching scheme to eliminate the leakage inductance associated
with the disabled path in back-off power mode (BPM). The
two-stage PA achieves a peak gain of 21.4 dB with a fractional
BW (fBW) of 22.6% (51–64 GHz). At 65 GHz, the PA has a
Psat of +17.9 dBm with an OP1 dB of +13.5 dBm and a peak
power added efficiency (PAE) of 26.5% in full-power mode.
In BPM, the measured Psat , OP1 dB, and peak PAE are +13.8 dBm,
+9.6 dBm, and 18.4%, respectively. The PAE is enhanced by
6% points at a 4.5-dB back-off. The PA is capable of amplifying
a 6 Gb/s 16-QAM modulated signal with an EVMrms of −20.7 dB
at an average Pout/PAE of +13 dBm/13.6%, respectively. This
PA was implemented in 16-nm FinFET, occupies a core area of
0.107 mm2, and operates under a 0.95-V supply.

Index Terms— CMOS, FinFET (FF), load modulation,
millimeter-wave (mm-wave), power amplifiers (PAs), power
combining.

I. INTRODUCTION

W ITH the introduction of 60 GHz, fifth-generation (5G)
communications, and radar systems for autonomous

driving, the demand for highly integrated millimeter-wave
(mm-wave) wireless front-ends has intensified with an empha-
sis on reducing the form factor and cost. Mm-wave bands
provide expanded bandwidth (BW) of several gigahertzes
for various wireless applications to operate at increased data
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rates. As the feature size of CMOS technologies continues
to scale to allow high-speed operation and high-level system
integration, major challenges exist for the development of
wireless radio system-on-chips (SoCs). One such challenge
is achieving high-efficiency power amplifier (PA) designs
with wide BW and high output power. Although a number
of mm-wave CMOS PAs [1]–[26] and SiGe PAs [27]–[29]
have been published, only a few of these publications were
implemented in a FinFET (FF) CMOS technology [3], [4],
which is a prime candidate technology to implement next-
generation mm-wave SoCs.

Though challenges of mm-wave design in an FF process
have previously been discussed in [30] and [31], some of
the considerations are worth mentioning here which can be
applied to achieve an improved PA efficiency. Self-heating is a
well-known concern in FF due to the confined geometry which
makes the heat dissipation through substrate difficult [30].
As a result, FF transistors are usually biased at a lower
current density that leads to a lower gain. Second, the high
parasitic capacitances contributed by the 3-D FF gate and
deeply scaled interconnect can limit the device ft and fmax

as well as increase the effective input/output quality factor of
the devices if careful layout optimization is not followed [30].
These challenges limit attainable gain per unit current, and thus
limit attainable PA efficiency. To combat this, a capacitively
neutralized differential pair is commonly used to boost Gmax

by 4–5 dB [34]. Another challenge associated with both FF
transistors and non-SOI processes, in general, is the limited
output power from a single-stage. FF has similar limits to
device stacking as bulk CMOS which thereby limits the max
output power that can be generated reliably. To circumvent
this, power combining is often employed to increase transmit
power.

The efficiency of PAs plays an important role for improving
battery lifetime as PAs often consume the majority of power in
radio transceivers. However, the average efficiency of the PA
is usually significantly lower than its peak efficiency due to the
characteristics of the data-modulated signal. As the demand for
a high data rate grows, spectrally efficient modulation methods
are desired. Unfortunately, these modulation schemes exhibit
a high peak-to-average power ratio (PAPR), thereby degrading
PA average efficiency. As an example, the probability density
function (PDF) of a 16-QAM modulation as a function of
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Fig. 1. Conceptual diagram illustrating PA average efficiency. The 16-QAM
PDF and PA PAE curves are depicted as functions of normalized PA Pout.

normalized PA Pout is shown in Fig. 1 along with the power
added efficiency (PAE) of a typical class-A PA. The average
PAE is the sum of the product of the PDF and PAE. As shown
in Fig. 1, the PA rarely operates in the peak PAE region and
most often operates in the lower PAE region which leads to an
average PAE much lower than its peak PAE. In this example,
though the peak PAE is 25%, the average PAE is only 6%.
As a result, several techniques have been proposed to enhance
efficiency at power back-off (PBO) in order to improve the
average PA efficiency.

One such effective and popular technique is the Doherty PA.
Doherty PAs show impressive back-off efficiencies, with one
implementation at 60 GHz exhibiting a peak PAE of 26% with
an enhanced PAE of 16.6% at 7-dB PBO [1]. However, the
large footprint associated with Doherty PAs complicates SoC
integration. In addition, Doherty PAs suffer from narrow BW
imposed by the λ/4 impedance rotation on the auxiliary path.
Furthermore, as next-generation systems are likely to utilize
several mm-wave bands from 28 to 90 GHz, a wideband PA
will be desirable in order to reduce the number of required
front-end modules for multi-band operation and thus lower
system cost. While some wideband mm-wave PAs have been
demonstrated [2], [3], their back-off efficiencies typically drop
by more than half at PBOs greater than 3 dB. As a result, it is
of interest to develop compact, wideband, high-output-power
PAs in deeply scaled FF CMOS with enhanced efficiency at
PBO.

This article presents a wideband reconfigurable two/
four-way power-combining PA with compact form factor
implemented in 16-nm FF CMOS [32]. The PA can be
configured in two discrete output power modes: full-power
mode (FPM) and back-off power mode (BPM). The PA applies
a load modulation technique similar to [33] for efficiency
enhancement in BPM but is further improved by utilizing
a proposed non-uniform power combiner. Moreover, a load
modulation switching scheme is proposed which minimizes
the variation in frequency response between the two modes
and improves performance in BPM.

It should be noted that while the presented PA achieves
both wide BW and efficiency enhancement at PBO in a
compact area, the efficiency enhancement is static in nature as
indicated by the two discrete modes of operation. In contrast,
a Doherty PA dynamically provides efficiency enhancement

Fig. 2. Two-stage PA architecture with a reconfigurable two-/four-way
series–parallel power combiner. Polarity of each gain stage is shown.

(i.e., no explicit reconfiguration required) and is well-suited for
high-PAPR modulations with low-to-moderate BW require-
ments. Nonetheless, there are several applications that still
benefit from discrete power control while maintaining wide
BW and high efficiency (e.g., power-control loops in commu-
nication links).

This article is organized as follows. Section II shows the
architecture and design of the proposed PA followed by
a detailed discussion of non-uniform power combining and
switching scheme in Section III. Section IV presents the
measurement results. Section V provides the conclusion with
a comparison to state-of-the-art mm-wave CMOS PAs.

II. TWO-/FOUR-WAY POWER-COMBINING

PA ARCHITECTURE

Fig. 2 depicts the PA topology. It is composed of two gain
stages, an input matching transformer, two interstage power
splitters, and a reconfigurable two-/four-way series-parallel
power combiner at the output. In FPM, all gain stages are ON

with SW1–4 open, thereby placing the PA in its highest Pout

mode. In BPM, DRV1-2 and PA2-3 are ON, while PA1 and
PA4 are OFF, and SW1–4 are closed. In this configuration,
the PA output stage becomes a parallel 2-to-1 combiner and
ideally operates at 6-dB PBO as compared to FPM, assuming
uniform power combining (i.e., all transformers have identical
turns ratios).

A. PA Core

Fig. 3 shows the detailed transistor-level schematic for
the bottom-half of the PA. Capacitively neutralized differen-
tial pairs are employed in all gain stages for an increased
Gmax [34]. The capacitances are obtained by overlapping
drain and gate routing in layout, similar to [4]. The driver
stages are biased in the class-A region for higher gain
while the PA stages are biased in the class-AB region with
a current density of 125 μA/μm for better efficiency at
PBO [3]–[7]. A common-mode (CM) source degeneration
inductor of 145 pH is placed in the driver stage for better
CM stability and CM rejection, as the driver stage contributes
to the majority of gain and is more susceptible to oscillation.
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Fig. 3. Detailed transistor-level schematic for the bottom-half of the PA.

B. Input Matching and Interstage Power Splitter

The input matching network uses a high-k (k = 0.6) trans-
former for minimal loss while low-k (k = 0.3) transformers
are used for the interstage power splitters to enhance the
BW [36]. Series power splitting is utilized for two reasons.
First, the resulting transformer inductance ratio (1.6:1) is
much lower than that of a parallel splitter (6.5:1) [2], thereby
resulting in lower transformer insertion loss [37]. Second,
series power splitting enables the use of shunt switches at the
front of PA1 and PA4 to disable these paths in BPM (SW1–2 in
Fig. 2). In contrast, a parallel power splitter would require a
large OFF impedance from PA1 and PA4, which is challenging
to achieve at mm-wave frequencies due to the large input
capacitance associated with the PA devices. As such, the shunt
switch in a series splitter leads to reduced loading of the OFF

paths in BPM (PA1 and PA4). Note that adding a switch to
reduce the signal swing at the disabled PA input is necessary.
This is because the swing accumulated (or Vrms) at the gate
of disabled PA might partially turn on the PA and degrade the
overall efficiency.

C. Output Matching Network and Power Combiner

The transformer-based output matching network is designed
using a holistic optimization approach to improve PA effi-
ciency by performing active/passive device co-design [3]. The
reconfigurable two-/four-way series–parallel power combiner
applies a non-uniform turns ratio to further improve the
performance which will be described in Section III.

III. NON-UNIFORM POWER COMBINING AND SWITCHING

Power combining is a commonly used technique for increas-
ing PA output power in a deep sub-micron CMOS process with
limited voltage supply. As described in [33], the combiner can
also be designed to properly adjust the load presented to the
PA, thus improving the PA efficiency at PBO. This technique
is commonly referred to as load modulation. The following
subsections discuss the techniques used in the power combiner
design in this article to improve performance when configured
in BPM with minimal impact to FPM performance.

Fig. 4. Conceptual diagram of non-uniform power combining. (a) Combiner
model. The impedances seen from each PA stage in (b) FPM and (c) BPM.

A. Non-Uniform Power Combining

The PA employs a reconfigurable two-/four-way series-
parallel power combiner to perform load modulation with
non-uniform turns ratios for the transformers presented at the
load of each PA driver. Applying a non-uniform turns ratio
improves the PA performance in BPM by reducing the change
in PA load impedance that occurs when switching between
the two modes. Fig. 4(a) shows the conceptual diagram of
a non-uniform power combiner with the 50-� antenna load
modeled as two 100-� resistors in parallel. Here, the charac-
teristic of non-uniform is identified as the different turns ratios
used in each pair of transformers that make up the half-circuit
of the combiner. As shown in Fig. 4(a), the non-uniform turns
ratios of transformers for PA1, PA2, PA3, and PA4 are 1:1,
1:

√
2, 1:

√
2, and 1:1, respectively. Fig. 4(b) shows the

configuration of the combiner in FPM. When all the paths
are ON, the voltages across each transformers’ secondaries are
Vin,

√
2Vin,

√
2Vin, and Vin, respectively, assuming each PA

outputs the same Vin. Moreover, the currents flowing through
each transformer’s secondary are equal. As a result, each
of the 100-� terminations is distributed as 59- and 41-�
impedances across the secondaries of the transformers of
PA2/PA3 and PA1/PA4, respectively. These impedances are
then transformed, via the respective turns ratios, to 29- and
41-� loads which are presented to each PA core. In BPM,
PA2 and PA3 will see a load impedance of 50 �, as shown
in Fig. 4(c), where PA1 and PA4 are OFF, and SW3 and
SW4 are ON.

By contrast, with the conventional uniform power
combining where the turns ratio is 1:1 for all transform-
ers (i.e., identical transformer turns ratios in the combiner),
the impedance presented to each PA is 50 �/100 � in
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Fig. 5. Simplified half-circuit schematic with a two-way series combiner for comparison between (a) uniform and (b) non-uniform power combining.

FPM/BPM. Now, assuming the impedance presented to the
PA in FPM is its optimal load, ropt, this impedance should
also be presented to PA2 and PA3 in BPM as well for
optimal performance. Therefore, by applying non-uniform
power combining, the impedance change between FPM and
BPM is reduced to 1.72× (29 �:50 �), as compared to 2×
(50 �:100 �) in uniform combining, and improves the output
power and efficiency in BPM.

Note that the impedance change between FPM and BPM
can be further minimized by choosing a more aggressive
non-uniform combining turns ratios. For instance, the turns
ratios of 1:1, 1:

√
3, 1:

√
3, and 1:1 can reduce the impedance

mismatch to 1.57 × (21 �:33 �), thereby improving Psat and
PAE in BPM further. However, implementing a turns ratio
of 1:

√
3 (or 1:3 inductance ratio) is challenging and exhibits

higher loss at mm-wave frequencies [37].
Finally, it is worth noting that the back-off efficiency can

also be improved by reducing the drive strength of each PA
while simultaneously adjusting the PA load line [5]. The PA
published in [5] is segmented into a few PA cells and capable
of adjusting the PA load line to accommodate the impedance at
PBO. In this scenario, an increase in the impedance presented
to the PA for BPM is desirable so that the PA can utilize
the full voltage swing in BPM and which is why a uniform
combiner was adequate for previous designs such as [5].
However, the PA design in [5] is a digital PA. Applying the
same technique to linear PAs would require the insertion of a
tail switch device into the PA unit cell which has implications
on performance. Simulations show that although insertion of
such a switch device would not significantly affect Psat and
linearity, the PAE would degrade by approximately 5% points.
As a result, instead of adjusting the PA load line by using a tail
switch, the load line of each PA device in this design remains
constant between FPM and BPM, and the passive combiner is
reconfigured to reduce the impedance difference between the
two modes.

B. Comparison of Non-Uniform and Uniform Power
Combining

This section compares non-uniform and uniform power
combining by presenting transistor-level simulation results.
As shown in Fig. 5, we will only consider the bottom-half
PA and an ideal switch for simplicity. Fig. 5(a) shows the
schematic for the uniform power combining which is com-
prised of two PAs (PA3 and PA4), an ideal switch, and a

two-way series power combiner with uniform turns ratios
of 1:1.2 for both transformers. The quality factor of the
inductors (Q = 15) and coupling factor of the transformers
(k = 0.65) are applied to emulate the passive loss of the
combiner. Since it is the half-circuit of the series–parallel
combiner, the load presented to the bottom-half PA is now a
100-� resistor in parallel with a 12-fF pad parasitic. Fig. 5(b)
shows the schematic for non-uniform power combining which
is the same as that of Fig. 5(a) except that the transformer
turns ratios for PA3 and PA4 are 1:

√
2 and 1:1, respectively.

Fig. 6(a) plots the drain efficiency (DE) versus Pout for
uniform and non-uniform combiners in both FPM and BPM.
For uniform power combining, the simulated DE drops by
7.1% points (52.1%–45%) when switching from FPM to
BPM. This is expected as the impedance presented to PA3 is
increased and shifted from ropt of the PA, as discussed in
Section III-A. By contrast, the simulated DE of non-uniform
power combining shows a difference of only 2.3% points
(51.3%–49%) between the two modes.

We can further break down the DE of each PA in the non-
uniform combining case. As shown in Fig. 6(b), the PA3 and
PA4 contribute slightly different DEs to the total DE of 51.3%
in FPM where the peak DEs for PA3 and PA4 are ∼52.8%
and ∼50.8%, respectively. This is also expected since the
impedances presented to PA3 and PA4 are different [Fig. 5(b)].
Note that the DEs for PA3 and PA4 are the same in uniform
power combining.

The efficiency difference between FPM and BPM is mainly
contributed by the PA3 as it is always ON but is presented
with different impedances in the two modes. By applying
non-uniform power combining, the simulated DE degradation
of PA3 between two modes can be improved from 7.1% points
to 2.9% points, see Fig. 6(a) and (b), respectively.

To provide another view of how non-uniform power com-
bining improves the efficiency, Fig. 7(a) plots the simulated
load–pull of DEs for uniform output combining using the
half-circuit schematic depicted in Fig. 5(a). The peak DE
occurs at a real 100 � in FPM since the included combiner
network should transform the 100-� resistance and present ropt

to both PA3 and PA4. In BPM, as the impedance presented
to the PA3 [Fig. 5(a)] is now 2× of ropt , the peak DE can
be obtained at a real 50 �, which is half of 100 �. With the
load impedance fixed at 100 � in the two modes, the DEs in
FPM and BPM are 52% and 45%, respectively, based on the
contours shown in Fig. 7(a). These results agree with Fig. 6(a).
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Fig. 6. Large-signal simulation results. (a) DE (and gain) comparison between non-uniform and uniform power combining in FPM and BPM. (b) Further
breakdown in DE for non-uniform power combining.

Fig. 7. Load–pull simulations of DE show how ropt shifts between two modes for (a) uniform and (b) non-uniform power combining.

In contrast, Fig. 7(b) presents the load–pull contours with non-
uniform combining as shown in Fig. 5(b). The peak DE in
FPM still occurs at a real 100 � but the peak DE in BPM
is now closer to 100 �. With a fixed 100-� load, the DE
of 51.3% in FPM and an improved DE of 49% in BPM are
obtained.

Note that the purpose of this simplified example is to
illustrate how non-uniform power combining reduces the
change in load impedance presented to the PA output stage
(PA1–4 in Fig. 2) between the two modes. The change in
peak efficiency between FPM and BPM will be larger in the
final design than what is shown in Fig. 6 due to several non-
idealities associated with practical implementations (e.g., loss
introduced by the switch on combiner secondary side in BPM,
non-ideal short of PA1 and PA4 inputs in BPM results in power
loss, etc.).

C. Proposed Switching Scheme
The proposed load modulation is implemented by placing

the switch at the transformer’s secondary side to eliminate both
the coupling and leakage inductances for the OFF path of the
combiner. To understand the switching scheme of the power

combiner, we will focus on the bottom half of the combiner
as shown in Fig. 8(a) which is composed of two transformers
and a switch. The simplified transformer model uses an
ideal 1-to-n transformer, coupling inductance kL, and leakage
inductance (1 − k)L [38]. Looking at Fig. 8(b) where an
ideal switch is placed at the secondary side, both the coupling
inductance, kL2, and the leakage inductance, (1 − k)L2 will
be shorted to ground. In contrast, Fig. 8(c) shows a technique
commonly used to implement load modulation which places a
shunt switch at the outputs of the PAs (transformer’s primary
side). In this configuration, the switch can short the kL2

term, but not the (1 − k)L2 term. As a result, the leakage
inductance becomes an undesired reactance in series with the
secondary of the ON path to ground, thereby degrading the
performance and frequency response in BPM. This effect is
more severe at mm-wave frequencies where the transformer’s
coupling factor is usually lower and thus leakage inductance is
non-negligible.

The switches are implemented using thick-oxide devices
with both gate and bulk terminals biased through kilo-ohm-
order resistors, RB and RG , to form a high-pass response
which stabilizes the switch on-resistance under a high-voltage
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Fig. 8. Comparison of implementing the switching scheme. (a) Power combiner model. (b) Proposed switch placement at secondary side. (c) Conventional
switch placement at transformer’s primary. (d) Thick-oxide switch architecture which accommodates a high-voltage swing.

Fig. 9. Two-/four-way series–parallel power combiner with non-uniform
turns ratios of (from left to right) 1:1, 1:

√
2, 1:

√
2, and 1:1.

swing, see Fig. 8(d). This technique is commonly used in T/R
switch designs [39].

D. Power Combiner

Fig. 9 shows a sketch of the proposed two-/four-way non-
uniform power combiner implemented using RDL, ultra-thick
metal (UTM), and 4×-thick metal (MZ ) layers of the process.
The combiner occupies a drawn area of 210 × 50 μm2 with a
drawn metal width of 3.4 μm. The simulated power combiner
insertion loss is 2.7/2.9 dB in FPM/BPM. This loss is higher
than what was reported in [32] due to calculation error in
the earlier publication. Asymmetry between the differential
terminals of each primary coil (e.g., primary-to-secondary
capacitive coupling) can be observed in Fig. 9 and is most
pronounced for PA1/PA4. Fig. 10 shows the magnitudes of
the series impedances seen from the two single-ended outputs
(+ and −terminals) of PA1–4. This asymmetry causes an
imbalance between the single-ended impedances presented to
each transistor and degrades the combiner efficiency. Effi-
ciency can be further improved by minimizing the magnitude
of this imbalance, although it was not fully optimized in this
design.

Fig. 10. Magnitude of impedances seen from the two single-ended outputs
(+/−) of PA1–4 in (a) FPM and (b) BPM.

In FPM, SW3 and SW4 are OFF and the drain terminals
see the most voltage stress. The simulated instantaneous peak
voltages of VD and VDG are 1.35 and 1.23 V, respectively,
which are well within the reliability margin for 18ud12 (1.8 V
underdrive to 1.2 V) devices. In BPM, SW3 and SW4 are ON.
The drain terminals are pulled close to the ground. The peak
VD is 139 mV, and VGD has a quiescent voltage of ∼1.2 V in
BPM.

IV. MEASUREMENT RESULTS

This PA is fabricated in 16-nm FF CMOS technology and
operates from a 0.95-V supply. The die photos are shown
in Fig. 11. The core area of the PA is 0.107 mm2.

The measured and simulated S-parameters in FPM and
BPM are shown in Fig. 12. In FPM, the PA achieves a
measured peak gain of 21.4 dB at 54 GHz and a 13-GHz BW
(51–64 GHz), see Fig. 12(a). In BPM [Fig. 12(b)], the PA
achieves a measured peak gain of 18.5 dB at 55 GHz and a
14-GHz BW (52–66 GHz). S11 < −5.5 dB and S22 < −5.2 dB
are achieved with S12 < −45 dB (not shown) over the band
of interest. The measured results show good agreement with
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Fig. 11. Die photographs of the PA in 16-nm FF CMOS. (a) PA test chip including pads. (b) Zoomed-in view of PA core (with 90◦ counter-clockwise
rotation).

Fig. 12. Measured versus simulated S-parameters in (a) FPM and (b) BPM.

Fig. 13. Measured versus simulated large-signal performance (Gp, Pout, and PAE) versus Pin in (a) FPM and (b) BPM at 65 GHz.

the simulations for S21 and S22 while the measured S11 null is
shifted ∼6 GHz lower.

Fig. 13 shows the measured and simulated large-signal
performance at 65 GHz. In FPM, the PA delivers a Psat of

+17.9 dBm with a +13.5-dBm OP1 dB and a 26.5% peak PAE.
In BPM [Fig. 12(b)], the measured Psat, OP1 dB, and peak
PAE are +13.8 dBm, +9.6 dBm, and 18.4%, respectively.
A reasonable agreement is achieved between measurements
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Fig. 14. Measured versus simulated PAE versus Pout in FPM and BPM at
65 GHz.

Fig. 15. Large-signal measurements in FPM and BPM across 60–70 GHz.
(a) Psat and OP1 dB. (b) Peak PAE and PAE at OP1 dB.

and simulations. Upon closer inspection, there appears to
be a larger than expected difference between the measured
PA Psat and the cascaded compression point (OP1 dB). This
may be attributed to the fact that the first stage, of the
two-stage PA, is biased closer to class-A to boost the gain,
thereby introducing a non-negligible impact on the overall
linearity. Second, PA1 and PA4 see a higher load impedance
as compared to PA2 and PA3 in the FPM, which contributes
to the soft compression of the PA.

Fig. 14 plots the measured and simulated PAE curves versus
Pout at 65 GHz. In FPM, the PA can deliver an output power of
+12 to +18 dBm with >12% PAE. For output powers below
+12 dBm, the PA can be switched to BPM for an enhanced
efficiency. The PAE is ∼6% higher in BPM over an output
power range of +8 to +12 dBm.

Fig. 15 shows key large-signal performance versus fre-
quency, including Psat, OP1 dB, peak PAE, and PAE at OP1 dB.
The PA maintains good performance within the BW of
60–70 GHz. The lowest frequency of large-signal test is
limited to 60 GHz due to the band-limited test setup. However,
the PA is expected to still maintain good performance down
to 52 GHz since it is within the 3-dB BW.

The PA was also tested with modulated signals at 65 GHz.
Fig. 16 shows constellations for two test cases. The measured

Fig. 16. Measured spectrums and constellations for (a) 1.5 GSym/s 16-QAM
and (b) 1 GSym/s 64-QAM at 65 GHz.

Fig. 17. Measurements of modulated signals. (a) EVMrms versus Pout for
various modulations. (b) PAE versus Pout with 4 Gb/s 16-QAM modulation
in FPM and BPM.

65-GHz spectrum shown in Fig. 16 was down-converted to
a 3.5-GHz IF and captured by a VSA. In Fig. 16(a), the PA
has an average EVMrms of −21.9 dB with an average Pout of
+10.5 dBm and an average PAE of 7.2% for 1.5 GSym/s
16-QAM. For 1 GSym/s 64-QAM shown in Fig. 16(b),
an average EVMrms of −23.2 dB with an average Pout of
+9.8 dBm and an average PAE of 8.2% is achieved. Fig. 17(a)
shows the EVMrms versus Pout in FPM and BPM for various
modulations. The measurement setup has an EVMrms floor
of −22 dB/−24 dB for 6 Gb/s 16-/64-QAM, respectively.
Therefore, the true PA performance is expected to be better
than what is reported. Fig. 17(b) plots the PAE versus Pout in
FPM and BPM which is similar to Fig. 14, but in this case,
it is for modulated signals at 65 GHz. As shown in Fig. 17(b),
the average PAE can be improved by 4.5% points at Pout of
+9 dBm when switched to BPM while maintaining reasonable
EVMrms of −20 dB for 4 Gb/s 16-QAM modulation. Note
that the simulated AM–PM distortion was below 3◦/1◦ for
FPM/BPM up to OP1 dB (13.5 dBm/9.6 dBm), respectively.
Therefore, the AM–PM conversion is not suspected to be
limiting the overall EVM performance.

Fig. 18 plots selected prior art [1]–[20], [22]–[26], [40] of
advanced 50–75 GHz (V-band) CMOS PAs, with technologies
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Fig. 18. Performance comparison of mm-wave (50–75 GHz) PA prior art. (a) Peak PAE versus PA Psat . (b) Peak PAE versus gain-fBW product [38].

TABLE I

CONTINUOUS WAVE PERFORMANCE COMPARISON TO PRIOR-ART Mm-WAVE PAS

TABLE II

MODULATION PERFORMANCE COMPARISON TO PRIOR-ART MM-WAVE PAS

varying from 45-nm SOI to 14-nm FF. The PAE versus Psat

is shown in Fig. 18(a), while the PAE versus gain-fractional
BW (fBW) product is shown in Fig. 18(b), where the fBW is
defined as the small-signal 3-dB BW divided by the center
frequency. The desired performance is on the upper right

corner, meaning high PAE, high Psat, and high gain-fBW
product. As seen from the FPM of this design improves upon
prior art for FF mm-wave PA designs [3] while also obtaining
a respectable performance in BPM. Tables I and II list the
comparison of the PA performance with prior-art.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2021 at 00:15:54 UTC from IEEE Xplore.  Restrictions apply. 



CHU et al.: RECONFIGURABLE NON-UNIFORM POWER-COMBINING V-BAND PA 1511

V. CONCLUSION

This article presented the design of a reconfigurable V-band
two-/four-way non-uniform power-combining PA implemented
in 16-nm FF CMOS. The PA achieves a high gain with large
fractional BW while also demonstrating back-off efficiency
enhancement when switching from FPM to BPM. This work
demonstrates the viability of high-power PA design in deeply
scaled FF CMOS, thus enabling the development of mm-wave
SoCs for next-generation wireless communication systems.
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