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ABSTRACT

J.B. Pendry has shown that a layer of material with relative permittivity and relative permeability both equal to
—1 behaves as a perfect two-dimensional lens for an object closer than the thickness of the layer. We examine
results for transmission through a material with relative constants close to —1. For a passive material, the
imaginary parts of €. and p,. are negative (the engineer’s convention). We treat the transmission of a delta-
function line source through a layer. This source includes all spatial wave numbers. The longitudinal component
k. of the propagation vector normal to the surface assumes values that are negative real (corresponding to
all angles from normal to grazing) and imaginary for the evanescent modes. Transmission in a medium of
€. = it = —1 amplifies the imaginary k, terms and, thus, restores the evanescent waves and bypasses the usual
diffraction limit of an ordinary lens. We show that small deviations from €, = p, = —1 cause a change from
amplification to attenuation of these evanescent waves and thus limit the degree of improvement of an image.
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1. INTRODUCTION

We have been attracted to work on problems involved in the design of substances with specified permittivity e
and permeability p. These substances have been called, variously, metameterials or photonic crystals. Smith
et al. made a metamaterial’ with simultaneously negative ¢ and p. J.B. Pendry? showed, theoretically, that a
plane layer of material with relative permittivity e, and relative permeability u, both equal to —1 will transmit
a perfect image of a flat object. Recently, Ziolkowski and Heyman?® published a thorough investigation of wave
propagation and focusing properties of a slab of a double negative medium (DNG) with emphasis on a time-
domain point of view with a lossy Drude model. We present limitations on focusing at a single frequency by
examining details of the transmission coefficient.

In 1968 V.G. Veselago? studied properties of DNG materials before any such material had been created. He
made arguments for the possibility of such a material and pointed out unusual effects (e.g., reversed Doppler
shift) of such a material. All of these effects follow from the result that the index of refraction is negative.
Following Pendry’s paper? there has been some discussion of how a DNG material leads to negative index of
refraction. The result that n = (e,p,)"/? is negative for €, and ju, negative follows from the requirement for a
passive substance and consideration of the limit of a slightly lossy substance, as we shall show in more detail
below. A layer of n = —1 material bends rays back so that the angle of refraction is the negative of the angle
of reflection, but it also has the unusual feature that evanescent waves are focused with enhanced amplitude to
provide a perfect image. The geometric condition for imaging is that the sum of the object distance from the
incident side of the layer and the image distance from the other side be equal to the thickness of the layer.

We calculate in some detail the transmission of a wave from a 2-dimensional line source through a layer
with €, and p, close to —1. For this 2-D problem, the electromagnetic propagation can be completely separated
into a p-polarization (incident E field parallel to the plane of incidence) and s-polarization (incident E field
perpendicular (senkrecht) to the plane of incidence). A delta function line source images to a delta function in
the specified limit. However, for slight deviations from the limit, the magnitude of the transmission coeflicient
for the evanescent spectrum peaks and then starts to fall off exponentially (instead of continuing its exponential
rise).



The 2-dimensional electromagnetic problem of reflection and transmission from a homogeneous uniform layer
has been presented in many texts®:® . From this solution we can write the transmission coefficient for a plane
wave in the following form, which is equivalent to equation (20) of Pendry.2

T = : (1)

cos (kzoda) + %(% + %) sin (kyod2)

where

ds = thickness of layer of with permittivity esand permeability ps
keo = (earpiark,” — k,*)1? = —j(k,? — ny’k, %)/
Z5 = wave impedance in medium 2 (the layer)

Z1 = wave impedance in medium 1, thefree space on either side of the layer.

The plane of incidence is taken as the X-Z plane, with the material boundaries at z = 0 and z = dy. The
wave propagation has a positive Z component. The free-space wave number k, = w/c¢, where w is the angular
frequency and ¢ the speed of light. We have introduced the relative constants €5, and po, and the index of
refraction ng = (earfior) 1/2 in medium 2. We use the engineer’s convention with time variation of cw components
proportional to e/“*. Thus, for a passive medium, €, and ps, have negative imaginary parts and the branch of
the square root for ny must also be chosen to give a negative imaginary part. The wave impedances have the
following forms.

kzm

D, = , s-polarization.
Wem,
w

Lim, = Hom , p-polarization.
kzm

with m = 1 in free space and m = 2 in the layer. In this general form, since the transmission coefficient T
depends on the symmetric combination Zs/Z; + Z1/Zs, the p-polarization and s-polarization cases will have
similar forms for 7', with the change of €, to s, in key places.

To be more explicit €; = €,, jt1 = fto, and k.1 = (k% — k,2)*/? . Also, for p polarization

ZQ - 1 kz? - 1 (n22k02*kw2)1/2

Zl N €27 kzl B €2p (k02 - kw2)1/2 ’

and for s polarization

Z2 B H2r kzl B H2r (k02 - kx2)1/2

We treat the p-polarization case explicitly here. The selection criterion for the correct branch of these square
roots is to choose signs that give attenuation of any wave (real or evanescent) in the two media.

Zy 1 ke 1 (ny2k,? — k,2)/?

2. REFRACTIVE INDEX CLOSE TO -1
2.1. To show DNG medium has negative refractive index

We are considering cases of ng close to —1. More precisely, o, = —€b, — jeb,. and po, = —ub,. — jub,., where
both €, and pb,. are real and close to 1, and where both €. and p}, are real, positive, and small compared
to 1. Thus,

ny? = €, oy — €ty + J(€hy ttiyy + Ho€h,) = a+ jo, (2)
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Figure 1. Illustration of permittivity, permeability and index of refraction for a slightly lossy material with dominant
negative real parts of permittivity and permeability.

where (2) serves to define a and d2. By the choice of cases a is real and close to 1, and d9 is real, positive, and
small of the same order as €, and p4,.. The index of refraction ng is a square root of (2). With the assumed
range of values for a and Js, then ny lies either in the first quadrant (same as n,?) or of opposite sign in the
third quadrant. We know that a passive medium requires a negative imaginary part of ng; hence, the choice
must be the third quadrant branch where the real part is negative. This logic is our proof that ny is negative
in a DNG medium. Figure 1 illustrates these quantities in the complex plane.

2.2. Behavior of k.1 and k.o

Now we show the choice of branch for k. for two cases: (a)k, < v/ak, and (b)k, > /ak,. The convention for
the square root sign is the root that has a positive real part (ambiguous for real part = 0, but determined by
continuation on the branch).

For case (a)

- j dok,?
k‘z2 = i\/akOQ — ka - iOQkOQ ~ + ak02 — ka (1 + %(ks—ok%> .
ar,” — Ry

The approximation becomes poor as k, — 1/ak,, but the square root stays in the same quadrant. Since k.o

must have a negative imaginary part,
kuo = —1/ny2k,2 — k2. (3)

For case (b)

; 2
koo = £jv/E7 — a2 + ik, ~ vk ak2(1+ %(k Saky ).

x2 - ako2)

Again, with this separation into a real and imaginary part with known signs, the choice of the overall minus
sign keeps the imaginary part negative, and

kz? = 73 \/ ka o n22k02 . (4)



With the same type of analysis, the longitudinal wave number in free space follows the branches given by:
(a) For ky < ko

kzlz\/W—)koaskw—)O.
(b) For kg > ko
k. =—jVk,2— k2 — —jk, as k, — 0.

The derivation follows by considering the limit of a medium with arbitrarily small loss. We summarize the
result thus: in the propagating region, the k,’s are of opposite sign in the negative refracting medium relative to
the normal refracting medium, whereas in the evanescent region the signs are the same. In the complex plane,
k.o lies in the third quadrant and k,; lies in the fourth quadrant. Figure 2 shows a plot of their paths. Both
paths begin infinitely far down in the complex plane as k, increases from —oo, track to the points indicated

with a “«” for k,; and an “x” for k.o at k, = 0, and then retrace the incoming paths as k, — oo.
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Figure 2. Complex plane paths of longitudinal wavenumbers k.1 and k.2 as a function of k, for a slightly lossy DNG
medium.

3. TRANSMISSION COEFFICIENT

From these considerations, it becomes clear that
(a) For k, fairly small compared to k,

Zy 74
22,21 _ o )
7 + A +R
(b) For k, fairly large compared to k,
Zy 41
22120 - 94 R,.
7 + 7 + Ry

R and Rp have a small magnitude of second order in the deviations of €5, and g, from —1. The meaning of
fairly large depends on the size of these deviations, but the region of validity of small R; and small R, grows
to include values closer to k, as the deviations approach zero.



The use of this expression for % + % in (1) leads to the forms:
(a) For k, < /ak, and k, < k, (Recall a =~ 1.)
1

T = ~ e Ik2d2 [1 — &(l — eink”'b)} (5a)
etikz2da | %&(e+jk12d2 — e—Jkz2d2 4

— gtik=1d2 as ng — —1 (5Db)

because k.o — —k.1 in this region.
(b) For k; > \/ak, and k, > k,

T= ! r elk=2d2 [1 - &(e%’md? - 1)} (6a)
e Jk=2d2 %(e+jkz2d2 — g Jkz2d2 4
— gIk=1d2 as ng — —1. (6b)

In case (b), the region of evanescent waves where the k.’s have a predominant imaginary part, (6a) becomes

T exp (dov/k,2 — k,2) N exp(dav/k,2 — k,2)
B exp (2o ETE2) <1 1 B exp (200 T R)]

For our cases where Ry, is quite small, |T'| has the property of growing in proportion to exp (da+/k,2 — k,2) until
this exponential gets to be about as large as v/Rp/2. |T| peaks in this vicinity. Then, as this exponential gets
large compared to v/ Ry /2,

| T| ~ (4/|Rs]) exp (—d2/k,2 = k,2). (7
where this approximation becomes an asymptote as k; — oc.

We have programmed complete equations for the transmission coefficient and show the behavior of |T| as a
function of k. /k, for four sequences of ez, and pso, in Figure 3.

Furthermore, it is interesting that to lowest order (which is second order) in the deviations of €, and o,
from —1 both R, and R have the same form.

6. k2 O\
mox R (54 S ) )

where 0, = €9, + 1 and &, = €9, o, — 1.

All the graphs in Figure 3 include the curve for the perfect focusing case, €2 = p2, = —1. The graph 3(a)
also shows the curve that is the result of no layer at all; i.e., where €3, = o, = +1. The magnitude of the
propagating part of the transmitted wave is the same for both of these cases, but with no layer the evanescent
spectrum shows its “standard” (for a point source) exponentially decreasing amplitude factor in propagation.

We also calculated phase curves for all of these cases. The phase is difficult to follow in these cases, but the
convergence to the €s,. = o, = —1 case does occur similarly out to the turn-over value of k..

4. SPECTRUM OF A LINE SOURCE AND ITS IMAGE

We consider a line magnetic source at a position z = —d; relative to the layer of negative refractive material
between the planes z = 0 and z = dy. The geometry and coordinates are illustrated (Layer is truncated in X
direction.) in Figure 4. The following paragraphs show the d-function spectrum of the E-field of the source and
derive the spectrum of the E-field in the image plane. For the perfect lens material of €3, = ps, = —1, these
spectra are identical.
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Figure 3. Transmission coefficient for propagating and evanescent parts of the spectra through a half-wavelength layer,
p polarization. In 3(a), each case has ur = ¢ and deviations from —1 are only in the imaginary part. In 3(b), the
deviation in €, is of the form §(—1 — j), and the deviation in mu, is of the form 6(1 — j). In 3(c) the deviation in €, is
of the form 6(—1 — 0.15), and the deviation in mu, is of the form §(1 —0.15). In 3(d) the deviations are only in the real
part, and of the form —d for ¢, and J for mu,. The small parameter ¢ is positive.

A magnetic current source of I,,0(z)d(z 4+ di) in the Y direction (out of the paper in Figure 4) is chosen
because it drives a p-polarized wave. The source magnetic field satisfies the 2-D wave equation outside this line
source.

0? 0?
(7 + 7 + k02> Hy = ijOJm = —jUJCOIm( - 5($)5(Z + dl))
The source magnetic field is, thus, a scalar multiple —jwe,I,;, of the Green’s function.

Hy(z,2) = —jweolm <T‘7HO(2)(ko|ﬁ + d12|))

where p = z2 + 22, £ and Z are unit coordinate vectors, and HO(Q) is the zero-order Hankel function of the
second kind. This solution can also be expressed in a Fourier transform as

_ weolm /°° exp (—jkyx — jko1|2 + d1])
4 00 k21

Hy(z,z) = dk,.



layer of
medium 2
source image
<~— d1—
d>

Figure 4. Coordinate system and location of the source and image relative to the DNG layer.

The electric field of this wave is obtained from Ampere’s law, and in particular the transverse incident E
field in the region z > —d; is

By = R P /_Ooexp< Ghaw — ka1 (2 + di))dky.

In the plane z = —dj, this gives E"¢ = ( — I, /2)5(3:) Furthermore, in the region z > ds, the fields have only
a transmitted component with

-1, [= . )
B — _/ T(kz) exp (= jkow — jka(z — da + dv))dk,

ar J_o
where T'(k;) is given by (1), and more explicitly by (5a) and (6a). In the limit that ey, = p2r = —1,
T(k;) = ewp(jka1dy) (where k,2 + k.3 = k,?), and thus
I, [ , -
T J_>

As a restatement of Pendry’s conclusion,? in the plane z = 2dy — d; (and in the region where z > da,

so for a focal plane to exist, da > d1), we have a delta-function image of the delta-function source and so by
superposition a perfect image of any flat source.

We examine the lack of perfection for the cases where €3, and pg,. deviate slightly from —1 by examining in
further detail the spectrum of E". If we let I,,, = —2 and consider the factor 1/(27) to be associated with the
inverse transform definition, then the spectrum in the region z > ds is

E(ky) = T(ky) exp ( — jkz1(z — do + dy)) .

We generated calculations of E (k) in the image plane. Plots of the results are shown in Figure 5. A perfectly
focusing layer would produce a flat line of magnitude 1 (logarithm = 0) in the graphs of Figure 5. We notice
that the focusing loses accuracy for the evanescent waves at about the same values of &, for comparable absolute
values of the deviations from —1. When the deviations are real, or quite close, there is a spike in the amplitude
just before it starts to decrease.

For large k,, In ‘Texp (- jkzldQ)‘ is asymptotic to a straight line with slope —2ds. From (7) and (8) the
asymptotic form is

|T(exp (*jkzldQ)N exp (—2k,ds) .

~
10c[?
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Figure 5. Log of magnitude of spectrum of line source image through a half-wavelength layer, p polarization. In 5(a),
each case has ur = ¢, and deviations from —1 are only in the imaginary part. In 5(b), the deviation in €, is of the form
0(—1 — j), and the deviation in mu, is of the form 6(1 — j). In 5(c) the deviation in €, is of the form §(—1 — 0.15), and
the deviation in mu, is of the form 6(1 — 0.15). In 5(d) the deviations are only in the real part, and of the form —J for
€ and J for mu,. The small parameter ¢ is positive.

As the plots of Figure 5 illustrate, In ‘Te*jk“dﬂ — 0 for ky < ko. The shoulder (half-width) of this spectrum
may then be regarded as the point where |T'| = 1 as given by (7) with the approximation from (8) that R, = §,2.
Let Ak denote the full width and M; = In (2/|dc|). Then

Ak/2 = /(My/d3)? + k2 .
The focal spot width AW (full width at half height) is then related inversely to Ak roughly by AW Ak ~ 2x.

Calculations based on the asymptotic spectrum verify this formula is accurate within 20% for do =1 .

5. CONCLUSIONS

Materials designed to provide negative index of refraction will have unusual and surprising reflection, refraction,
and transmission properties. One of these is the possibility to create an image with a planar layer. But this
image will have many practical limits, which will be related to the fact that such materials will have a loss
component, will have to be carefully designed to get €3, and ps, close to —1, and will have strong frequency



dispersion. From the above, we note that the perfect lens occurs only when €5, and ps, are exactly equal to
—1, and the image is so sensitive that a slight deviation of €3, and pso, from -1 causes a significant departure
from the perfect image.

In conclusion we agree with Pendry’s calculation? of the limit of the transmission coefficient, which yields
amplification of the evanescent waves to provide a perfect image. We examined the limiting behavior of a passive
medium as it approaches this limit of €y, = po, = —1. For a given €3, and ps, (both very close to —1), then
for |kz| less than some “turn-around” value the transmission coefficient is close to the ideal amplifying factor.
However, for larger |k,|, T rapidly diverges from that ideal perfect-focus amplification.
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