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Photonic integrated circuits have the potential to be a disruptive technology comparable to

the success of electronic integrated circuits. The absence of a compact, low-power all-optical

nonlinearity limits the capability for information processing and communication applications.

Dielectric microresonators and the heterogeneous integration of optical transitions such

as color centers, quantum dots, and quantum wells have distinct advantages for integrated

nonlinear optics. This thesis explores the light-matter interaction of two-dimensional materials

supporting an excitonic optical transition coupled to dielectric microresonators. A compact

expression for calculating the light-matter interaction is presented. The theoretical estimate of

the light-matter interaction and input-output characteristics of the exciton-resonator system

agrees with experimental observations. Exciton-phonon interactions are incorporated into the

Hamiltonian model to describe the asymmetric cavity-coupled photoluminescence observed

in experiments.
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Chapter 1

INTRODUCTION

Atomically thin van der Waals (vdW) materials have generated strong interest in recent

years for their possible electronic and optoelectronic applications [1–3]. The appeal of vdW

materials for use as an active or passive material in photonic integrated circuits (PICs)

hinges on their layered nature, which allows them to be integrated without concern for

lattice-matching to the underlying substrate material [4]. The integration of vdW materials

can thus be made independent of the PIC fabrication. The devices can be manufactured

separately using existing high-throughput nanofabrication, including CMOS processes, and

then the vdW material can be transferred on this pre-fabricated photonic platform to add new

functionalities. The variety of vdW materials available with different optoelectronic properties

provides for broad opportunities in the fabrication of light sources [5, 6], modulators [7],

detectors [8], and nonlinear optical devices [4].

1.1 Integrated nonlinear optics

At the ultimate extreme, realizing single-photon nonlinear optics in a scalable platform

could revolutionize both classical and quantum information science and engineering [9–12].

However, there exist fundamental reasons why low-power nonlinear optics in a small form

factor is difficult to achieve. Consider the Mach-Zehnder interferometer (MZI, Fig. 1.1a)

which consists of two input (âi) and output (b̂i) modes, two 50 : 50 beamsplitters BS1 and

BS2, and a phase shift φi = βiLi in each arm where Li is the physical length of the optical

path and βi = 2πni
λ

is the propagation constant with index of refraction ni at the input

wavelength λ [13, 14]. The mode transformations are



2

b̂1

b̂2

 =
1

2

 1 1

−1 1


︸ ︷︷ ︸

BS2

eiφ1 0

0 eiφ2


︸ ︷︷ ︸

φL

1 −1

1 1


︸ ︷︷ ︸

BS1

â1

â2

 (1.1)

=
ei(φL+φ2)/2

2

 cosφL/2 i sinφL/2

i sinφL/2 cosφL/2

â1

â2

 (1.2)

The relative phase shift for the linear MZI is φ = φL with φL = φ1 − φ2 = β1L1 − β2L2.

The optical intensity is proportional to the number operators of the modes (i.e., Iin ∝ â†1â1,

Iout ∝ b̂†1b̂1). In the absence of input into mode â2, the output intensity of mode b̂1 is then

Iout =
Iin
2

(1 + cosφ) (1.3)

By imparting a relative phase shift of φ = π the Mach-Zehnder interferometer output can

be swept from Iout = Iin to Iout = 0. In other words, the MZI acts as an optical switch. This is

the premise behind optical modulators that take advantage of the electro-optic, thermo-optic,

or plasma dispersion effects to manipulate the index of refraction ni of the interferometer

arms.

Now consider the nonlinear MZI with cross-phase modulation (XPM, Fig. 1.1b) due to

an intensity-dependent refractive index n = n0 + n2I [15, 16]. n0 is the normal, weak-field

refractive index and n2 is the second-order refractive index (optical Kerr effect). The output

intensity of Eq. (1.3) now includes a nonlinear relative phase shift φ = φL + φNL with

φNL =
γIin

2
(L1 − L2) . (1.4)

The nonlinear parameter is γ = 2πn2

λAeff
. Although the effective mode area (Aeff ) of integrated

waveguides is small, L1 − L2 must also be small for a compact footprint, and waveguiding

materials are typically chosen for their foundry compatibility and low absorptive loss; not

their optical nonlinearity (n2). This leads to the high power requirements needed to observe

integrated nonlinear optical phenomena.
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Figure 1.1: Mach-Zehnder interferometer. a) Mach-Zehnder interferometer (MZI) with

two input and output modes, two 50 : 50 beamsplitters BS1 and BS2, and a phase shift

φi = βiLi in each arm. b) Nonlinear MZI with cross-phase modulation (XPM) due to an

intensity-dependent refractive index n = n0 + n2I. c) Resonator-enhanced MZI with a

nonlinear ring resonator inserted into one of the arms of a MZI enhances the nonlinear phase

shift near the optical resonance.
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Introduction of a nonlinear ring resonator into one of the arms of a nonlinear MZI

(Fig. 1.1c) can enhance the nonlinear phase shift near the optical resonance. The effective

interaction length (Leff ) of the interferometer arm increases due to re-circulation of the input

light. And the resonator electric field intensity (IC) increases due to accumulated temporal

confinement of the input light. This results in an effective nonlinear phase shift

φNL =
2n2Iin
π3n2

0

(λQ)︸ ︷︷ ︸
Leff

(
Q

Vm

)
︸ ︷︷ ︸

IC

. (1.5)

The quality factor Q = ω0

Γ
is a fundamental figure of merit for all resonators that quantifies

the energy stored in the resonator (ω0) relative to the power dissipated per cycle (Γ). The

mode volume (Vm = AeffR) quantifies the spatial confinement of the light in the resonator.

The point of this digression was to provide a short, practical motivation for microresonators

with a large Q/Vm in integrated nonlinear optics.

1.2 Microresonator QED

This thesis explores the light-matter interaction of monolayer, semiconducting transition

metal dichalcogenides (TMDs) that support an excitonic optical transition evanescently

coupled to a dielectric microresonator [2, 4]. The intent is to repeat the successes of

cavity quantum electrodynamics (cQED) with atomic beams [17] implemented instead with

microresonators and semiconductor optical transitions that can ostensibly be scaled using

fabrication technologies developed for the microelectronics industry.

The first experimental step for such a system is to demonstrate a coherent interaction

between a resonant optical mode and the two-dimensional (2D) excitonic transition. When

the coherent interaction strength is greater than the photonic and excitonic losses, the system

is said to be in the strong coupling regime manifesting as hybridized exciton-polariton modes.

These polariton modes are generally observed via an anti-crossing in the spectrum of the

resonator frequency and the excitonic transition, when one of the resonances is tuned across

the other. For integrated nonlinear optics, the polariton then inherits the quantum features
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of the excitonic transition which includes exciton-exciton interactions, lending to a Kerr-type

optical nonlinearity from the polariton-polariton interaction. From this optical nonlinearity

there exist theoretical proposals utilizing the TMD excitonic transition for quantum optical

applications in single-photon nonlinear optics [18–20].

Several research groups have already observed exciton-polaritons using 2D TMD excitons

with 2D planar resonators, including distributed Bragg reflector (DBR) cavities [21–24] and

nonlocal metasurfaces [25]. 1D guided resonances in planar waveguides have also been used

to study exciton-polaritons [26, 27]. An advantage of these types of resonators is the strong

dispersion thanks in part to the lack of 3D confinement of the electromagnetic field. This

dispersion allows the investigation of strong coupling via energy-momentum spectroscopy.

In other words, by collecting light at different angles of emission or reflection from the

resonator we can probe different resonance frequencies without the requirement of physically

tuning the resonator. However, the lack of 3D confinement also implies a large mode volume.

Hence, it would be difficult to realize a strong polariton-polariton interaction that is inversely

proportional to the confinement area [18].

Zero-dimensional (0D) resonators can confine the electromagnetic field in all three spatial

dimensions to a sub-wavelength mode volume. As a result of such strong resonant mode

localization, the resonance is dispersionless and the exciton-resonator detuning must be

modified by some other physical means. To date, curved fiber-DBR cavities are the only

0D platform that have demonstrated exciton-polaritons with 2D excitons [28, 29]. Here, a

fixed DBR mirror and a mechanically movable fiber creates the cavity mode. The cavity

length, and hence the cavity resonance frequency, is controlled by the spatial separation

of the fiber and bottom DBR. The tuning of the cavity allows for direct observation of

the avoided crossing associated with the formation of exciton-polariton modes. Recently,

signatures of single-photon nonlinearity have been reported in a III-V quantum well system

coupled to an optically confined mode of a fiber-DBR cavity [30, 31]. While these works

provide remarkable proof of concept demonstrations with promising perspectives [32], the

in-situ tuning advantage of a fiber-DBR cavity comes at the expense of a larger mode volume
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as compared to a photonic crystal defect resonator [33, 34].

On-chip integrated 0D resonators, such as a photonic crystal defect resonator (PCDR),

provide a means to confine light in a wavelength-scale mode volume while allowing many such

resonators to couple to each other via evanescent fields [35]. In fact, TMDs coupled to PCDRs

have already been used to demonstrate optically pumped lasing [5, 36], cavity enhanced

electroluminescence [37], and second harmonic generation [38, 39]. TMD hetero-structures

have also been integrated with PCDRs to demonstrate emission enhancement [40] and lasing

[41].

However, no conclusive signature of a coherent interaction between TMD excitons and a

small mode volume on-chip microresonator had been reported and the value of a coherent

light-matter interaction strength g had not been estimated for any 2D excitonic transition,

including III-V quantum wells coupled to an on-chip PCDR. The difficulties lie in the

degradation of the quantum well excitonic transition due to etching, lack of in-situ tuning of

on-chip resonators, and measuring the 0D resonator in a transmission configuration.

Strong coupling and subsequent single-photon nonlinear optics have been demonstrated

in self-assembled quantum dots coupled to zero-dimensional (0D) cavity systems [42–45]. In

a quantum dot, the exciton is confined in all three dimensions, which is defined as a 0D

exciton. Similarly, in a PCDR [46] or a fiber-DBR cavity [47], light is confined at wavelength

scale in all three dimensions, making these systems 0D cavities. While such 0D polaritons

can provide the strongest nonlinearity, arising from the quantum anharmonicity induced by

the 0D exciton [45, 48], practical limitations, such as limited range of cavity tuning and the

stochastic nature of the position and wavelength of quantum dots, prevent the scalability of

such a platform.

The importance of the strong coupling between the 2D excitonic transition and the

microresonator stems from the enhancement of the exciton-exciton interaction due to the

same increased electric field intensity mentioned in the previous section [18, 49]. The field

enhancement is necessary to overcome the reduced Hamiltonian anharmonicity compared

to the 0D excitonic transition. While many quantum optical effects have been predicted in
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the 2D exciton-polariton systems [50, 51], the lack of excitonic wave function confinement

in all three dimensions precluded a clear observation of single-photon nonlinearity (e.g.,

reaching the regime of polariton blockade under resonant excitation [18]). We emphasize that,

assuming strong coupling is achieved, a small cavity mode volume is the primary figure of

merit for maximizing the optical nonlinearity [52]. As such, on-chip 0D microresonators with a

sub-wavelength mode volume coupled to a 2D excitonic transition can simultaneously provide

a large light-matter interaction and a clear path to a scalable architecture for integrated

nonlinear optics.
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Chapter 2

TECHNOLOGY DEVELOPMENT

Dielectric microresonators and semiconducting transition metal dichalcogenides (TMDs)

support optical resonances which are solutions of the wave equation and Schrödinger equation,

respectively, subject to suitable boundary conditions. In this chapter I provide theoretical

background for the physical manifestations of these solutions, known as quasinormal modes

for dielectric microresonators and Wannier excitons for TMDs.

A modified polycarbonate-polydimethylsiloxane (PC-PDMS) transfer technique is then

presented, which allows precise pickup and placement of vdW materials onto photonic

integrated circuits (PICs). As mentioned in Kim et al [53], the contact area (i.e. the region

of the PC film which is in contact with the substrate) of the standard dome stamp transfer

method is limited to an approximately 50 µm x 50 µm area. The selectivity of the standard

transfer method leaves detritus on the photonic integrated circuits that can destroy their

optical properties. The contact area of the modified process can be two orders of magnitude

smaller than the dome method. The efficacy of the new transfer process is demonstrated

by placing WSe2 onto a large-area silicon nitride spiral [54] and two different semiconductor

monolayers (WSe2, MoSe2) onto neighboring silicon nitride ring resonators [55].

2.1 Dielectric microresonators

Photonic intergrated circuits (PICs) use wavelength-scale patterning of dielectric materials

to confine and guide light via a refractive index contrast similar to the mechanism for total

internal reflection. Dielectric microresonators, a component used in PICs, use constructive and

destructive interference of the wave solutions of Maxwell’s equations to enable confinement of

the electromagnetic field in time.
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2.1.1 Quasinormal modes

These quasinormal modes (QNMs), or resonant modes, of dissipative (non-Hermitian) elec-

tromagnetic resonators are time-harmonic solutions of the source-free, Maxwell’s equations

[56, 57]

[µ0µR(r, ω̃µ)]−1∇× Ẽµ(r) = iω̃µH̃µ(r) (2.1)

[ε0εR(r, ω̃µ)]−1∇× H̃µ(r) = −iω̃µẼµ(r) (2.2)

satisfying the Silver-Müller radiation condition

r̂× Ẽ(r, ω)→
√

µ0

ε0εB
H̃(r, ω), r →∞ (2.3)

r̂× H̃(r, ω)→ −
√
ε0εB
µ0

Ẽ(r, ω), r →∞. (2.4)

The radiation condition ensures the solution contains only outgoing waves [57–59]. Ẽµ (H̃µ)

is the electric (magnetic) field, ε0 (µ0) is the permittivity (permeability) of free space, and

εR (µR) is the relativity permittivity (permeability). At sufficiently large distances the

relative permittivity and permeability are assumed to have constant background values,

εR = εB = n2
B and µR = 1. A finite-difference time-domain (FDTD) electromagnetic solver,

such as Lumerical-Ansys, with perfectly matched layers can be used to calculate the QNMs by

initially exciting the the resonant field with a short input pulse and simulating the resonator

ring-down [60, 61].

The difficulty associated with the QNMs of dissipative electromagnetic resonators is their

complex resonant frequency, ω̃µ = ωµ − iγµ, used to define the resonator quality factor Qµ =

ωµ/2γµ. Assuming a spherical outgoing wave where E(r, t) ∝ exp [−iω̃µ(t− nB|r|/c)]/|r|,

substitution of the complex resonant frequency leads to a spatially divergent far-field behavior,

E ∝ exp [γµnB|r|/c]/|r| [56, 62]. This field divergence necessarily leads to a difficulty making

quantitative predictions from simulated mode field profiles. Specifically, for dissipative
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resonators the volume integral used to define the normalization of the electromagnetic field is

exponentially diverging. Compare this to the classical results of Hermitian resonators where

the integration volume is defined by energy considerations, usually located at the physical

boundaries of the resonator [63].

Methods have been established to regularize QNMs using FDTD electromagnetic solvers

[62]. However, note that the divergent behavior of the QNM becomes significant at a distance

rQNM such that (γµnB/c)rQNM ≈ 1. For a dielectric microresonator with a moderate quality

factor, for example Q = 104, the field decay rate at visible frequencies of light (ω ≈ 400

THz) is approximately 10 GHz. With a background relative permittivity equal to that of free

space (εB = n2
B = 1) the divergent behavior of the QNM is important at distances beyond

rQNM ≈ 1× 104 µm. From this we can infer the QNM for dielectric microresonators can be

regularized by introducing a spatial cut-off of the integration volume [58, 61].

The zero-dimensional photonic crystal defect resonator (PCDR) in-line with an optical

waveguide is an example of a dielectric microresonator that supports QNMs. The simplest

one-dimensional photonic crystal is the infinite Bragg grating, with the center wavelength of

the stop-band at λB = 2Λneff , known as the Bragg wavelength [14, 63, 64]. Λ = L1 + L2 is

the grating period and neff = (n1L1 + n2L2)/(L1 + L2) is the average effective index (Fig.

2.1). The PCDR is, in essence, a Fabry-Perot optical cavity formed by distributed Bragg

reflectors (DBRs). A π/2 phase shift defect with an optical length Λ/2 is inserted in the

center of a finite Bragg grating to introduce resonant tunneling at the Bragg wavelength [14]

(Fig. 2.2).

For monolithic fabrication of an in-plane PCDR on a dielectric substrate the mirror

strength of the grating (a measure of the grating’s reflectivity) is linearly apodized to reduce

the out-of-plane scattering from coupling to radiation modes. We use the deterministic

design outlined in Quan et al. [66, 67] for its high quality factor and strong coupling to the

feeding waveguide. The former is essential for the strong coupling regime of the light-matter

interaction and the latter for observation of polaritons in a transmission configuration.
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Figure 2.1: Distributed Bragg reflector. A distributed Bragg reflector (DBR) consisting

of 2N + 1 layers of alternating quarter-wavelength high and low index materials [65].



12

Figure 2.2: Distributed Bragg reflector resonator. A dielectric resonator formed by the

inclusion of a π/2 phase shift defect within a distributed Bragg reflector (DBR). Alternatively,

this can be understood in terms of a resonance formed between two DBRs.

2.1.2 Input-output relations

In-line resonator

To understand the transmission properties of the in-line resonator, such as the PCDR, consider

that the Hamiltonian of a single-mode electromagnetic resonator is commonly described by

that of a free harmonic oscillator of the form

ĤC = h̄
∑
k

ωkâ
†
kâk, (2.5)

â†k is the bosonic creation operator of photon with momentum k. For a dispersionless

resonator with no in-plane (perpendicular to the propagation direction of the waveguide)

photon momentum this reduces to

ĤC = h̄ω̃C â
†â, (2.6)
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where ω̃C = ωC − iκ is the complex resonant frequency of the resonant mode which includes

the intrinsic radiative loss κ. Following the input-output theory of Collett and Gardiner [68,

69], the quantum Langevin equation describing the internal mode for a two-sided, single-mode

resonator with a single external driving field is

dâ

dt
= − i

h̄
[â, ĤC ]− γ1

2
â− γ2

2
â+
√
γ1âin. (2.7)

γ1,2 are the resonator damping constants for the two sides of the resonator. âin is the external

driving field coupled to the resonator through γ1. The transmitted field âout is coupled to the

resonator via γ2, as described by the equation

âout =
√
γ2â. (2.8)

Inserting Eq. (2.6) into Eq. (2.7) and computing the commutator gives

dâ

dt
= −iω̃C â−

γ1

2
â− γ2

2
â+
√
γ1âin. (2.9)

In the frequency domain the internal mode operator is taken to be

ã(ω) =
1√
2π

∫ ∞
−∞

eiωtâ(t)dt. (2.10)

Eq. (2.9) in the frequency domain is then

− iωã = −iω̃C ã−
γ1

2
ã− γ2

2
ã+
√
γ1 ãin. (2.11)

The operator ã can be solved in terms of the operator ãin

ã =

√
γ1

−i(ω − ω̃C) + 1
2
(γ1 + γ2)

ãin (2.12)

This can be substituted into Eq. (2.8) to find

∣∣∣∣ ãoutãin

∣∣∣∣2 =

∣∣∣∣ √
γ1γ2

−i(ω − ω̃C) + 1
2
(γ1 + γ2)

∣∣∣∣2 (2.13)
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Substituting ω̃C = ωC − iκ we get

∣∣∣∣ ãoutãin

∣∣∣∣2 =

∣∣∣∣ √
γ1γ2

−i(ω − ωC) + κ+ 1
2
(γ1 + γ2)

∣∣∣∣2 (2.14)

Simplification of this result leads to the standard transmitted spectrum of an in-line resonator

T (ω) =

∣∣∣∣ ãoutãin

∣∣∣∣2 =
γ1γ2

(∆ω)2 + (κ+ 1
2
(γ1 + γ2))2

(2.15)

with ∆ω = ω − ωC the detuning of the driving external field frequency ω, such as a laser,

from the resonator frequency ωC . For a symmetric resonator with γ = γ1 = γ2 this reduces to

T (ω) =

∣∣∣∣ ãoutãin

∣∣∣∣2 =
γ2

(∆ω)2 + (κ+ γ)2
(2.16)

This result is in accord with analysis based on scattering theory [70]. Tmax =
(

γ
κ+γ

)2

is the

maximum transmission efficiency of the in-line resonator at zero detuning (∆ω = 0) for a

given instrinsic radiative loss (κ) and waveguide-coupled resonator damping (γ).

Side-coupled resonator

Single-mode: Alternatively, the side-coupled resonator geometry has the advantage it

partially decouples the intrinsic cavity quality factor and field profile from the transmission

properties of the resonator. The quantum Langevin equation describing the internal mode

for a side-coupled, single-mode resonator with a single external driving field is [71, 72]

dâ

dt
= − i

h̄
[â, ĤC ]− i√γSC âin. (2.17)

The resonator loss γSC associated with the presence of the side-coupled waveguide leads to a

modified complex frequency of the resonant mode ω̃C = ωC − i(κ+ γSC). The transmitted

field âout is coupled to the resonator via γSC , as described by the equation

âout = âin − i
√
γSC â. (2.18)
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Following identical steps which concluded with Eq. (2.15), the transmitted spectrum of a

side-coupled resonator is

T (ω) =
(∆ω)2 + κ2

(∆ω)2 + (κ+ γSC)2
. (2.19)

Again, this result is in accord with analysis based on scattering theory [70].

Two degenerate modes: The quantum Langevin equations describing the two degenerate

internal modes for a side-coupled resonator with a single external driving field are

dâ1

dt
= − i

h̄
[â1, ĤC ]− i√γ1âin (2.20)

dâ2

dt
= − i

h̄
[â2, ĤC ]− i√γ2âin. (2.21)

The Hamiltonian describing the two modes is now

ĤC = h̄ω̃C â
†
1â1 + h̄ω̃C â

†
2â2 + h̄β∗â1â

†
2 + h̄βâ†1â2, (2.22)

â1,2 are the bosonic annihilation operators for the resonator modes. β is a mode coupling

between the two resonator modes [73]. The resonator loss associated with the presence of

the side-coupled waveguide for the two modes leads to a modified complex frequency of the

resonant mode ω̃C = ωC − i(κ + 1
2
(γ1 + γ2)). The transmitted field âout is coupled to the

resonator via γSC , as described by the equation

âout = âin − i
√
γ1â1 − i

√
γ2â2. (2.23)

Following identical steps which concluded with Eq. (2.15) and Eq. (2.19), the complex

transmittance of the two degenerate modes is found to be

t(ω) =
ãout
ãin

=
(ω − ω̃C)((ω − ω̃C)− i(γ1 + γ2))− i√γ1γ2(β + β∗)− |β|2

(ω − ω̃C)2 − |β|2
(2.24)
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In the absence of coupling between the degenerate modes (β = 0), and the couplings between

each resonator mode and the waveguide are equally strong (γ = γ1 = γ2), the transmission

spectrum reduces to

T (ω) =

∣∣∣∣ ãoutãin

∣∣∣∣2 =
(∆ω)2 + (κ− γ)2

(∆ω)2 + (κ+ γ)2
(2.25)

This result is in accord with analysis based on scattering theory [70] and applies to both

standing wave resonators (e.g., a photonic crystal defect resonator) and traveling wave

resonators (e.g., a whispering gallery mode resonator). There exists a critical coupling where

the intrinsic radiative loss is equal to the resonator-waveguide coupling (κ = γ) such that

transmission is zero at the resonant frequency of the degenerate resonator modes.

2.2 Two-dimensional excitonic transition

An exciton is a quasiparticle excitation consisting of an electron and hole bound by the

Coulomb force. The phenomenological approach to treating the Wannier exciton in TMDs

is the effective mass Hamiltonian which is identical to that of the hydrogen atom with the

reduced mass defined from the effective mass of the electron and hole. In this section I sketch

the second quantized derivation of the Wannier exciton for motivating the excitonic operator

used in later chapters.

The one-pair subspace of the electron-hole Hamiltonian Heh = He +Hh + Veh describing

semiconductors is [74]

He =
∑
k

ε
(e)
k a†kak (2.26)

Hh =
∑
k

ε
(h)
k b†kbk (2.27)

Veh = −
∑
q 6=0

Vq
∑
k1k2

a†k1+qb
†
k2−qbk2ak1 (2.28)

a†k and ε(e)
k are the electron creation operator and electron kinetic energy, respectively. b†k
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and ε
(h)
k are the hole creation operator and hole kinetic energy, respectively. And Veh is

the Coulomb interaction between the electron and hole with Vq = e2/ε0εscL
3q2 for two-

and three-dimensional systems. εsc is the dielectric constant of the semiconductor, L is a

quantization volume, and q is the transferred momenta between the electron and hole states.

The correlated state |i〉 of an electron-hole pair is an eigenstate of the Schrödinger equation

in the presence of the Coulomb interaction

(He +Hh + Veh − Ei) |i〉 = 0. (2.29)

The correlated pair state

|i〉 = B†i |v〉 (2.30)

defines the exciton creation operator B†i . The exciton creation operator can be written in

terms of the electron and hole creation operators

B†Qivi
=
∑
p

f (νi)
p a†p+γeQi

b†−p+γhQi
(2.31)

f
(νi)
p is the relative motion wave function of the exciton satisfying the hydrogen-like Schrödinger

equation, also known as the Wannier equation,

p2

2µX
f (νi)
p −

∑
q 6=0

Vqf
(νi)
p−q = εvif

(νi)
p . (2.32)

The free electron (ke = p+ γeQi) and free hole (kh = −p+ γhQi) momenta define the center-

of-mass momentum (Qi) and relative momentum (p) with γe = 1 − γh = me/ (me +mh).

The reduced mass is µ−1
X = m−1

e +m−1
h .

The two-dimensional exciton bound-state energies from the solution of Eq. (2.32) are [75]

En = −E0
1

(n+ 1/2)2
(2.33)
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with n = 0, 1, ... where E0 = e2

8πε0aB
is the exciton Rydberg energy and aB = 4πh̄2ε0

e2µX
is the

exciton Bohr radius. Note, the binding energy of the exciton ground state in three dimensions

is E0 and 4E0 in two dimensions due to out-of-plane quantum confinement of the Bohr radius.

Transition metal dichalcogenides [76] are van der Waals (vdW) materials similar to

graphene that can be mechanically exfoliated from bulk crystals or chemical grown. When

thinned to a single monolayer the MX2 TMDs with M = Mo,W and X = S, Se become direct

bandgap semiconductors which support excitonic transitions. Due to the large out-of-plane

confinement the typical exciton binding energies are on the order of 0.5 meV. The exciton

binding energies are larger than the thermal energy kBT ≈ 25 meV at room temperature

allowing for observation of excitonic photoluminescence even at elevated temperatures. Al-

though the excitonic transition in monolayer TMDs conforms well to the effective mass

Hamiltonian described in Eq. (2.32) the Coulomb interaction must be replaced by a electron-

hole interaction that accounts for nonlocal charge screening [77–79]. In the 2D TMD material

family, monolayer MoSe2 is particularly interesting as the only one with the the neutral

exciton as the ground state optical transition [80].

2.3 Material integration

Having motivated the design of dielectric microresonators and the existence of an excitonic

optical transition in TMDs it is important to first establish a deterministic transfer method

for marrying the two material platforms into a single device. Mechanically exfoliated and

small-area chemical vapor deposition (CVD) grown vdW materials are pervasive in laboratory

experiments due to their high quality and ease of device integration [81, 82]. Various transfer

techniques have been devised to facilitate rapid prototyping of vdW material heterostructures

assembled from randomly located, micron-sized flakes that are often surrounded by unwanted

bulk material [53, 83, 84]. For pure material studies the surrounding bulk materials do not

pose a serious problem because there are no extended structures to avoid in the transfer

process. In the realm of nanophotonics, however, stray bulk material can modify the optical

properties of the structure under study. Moreover, many of these contaminants cannot be
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removed easily via etching or cleaning in solvents, often leading to ruined devices. Hence,

a local transfer technique with improved monolayer discrimination is desired for high-yield

vdW material integrated nanophotonic structures.

2.3.1 Experimental procedure

Figure 2.3(a) and figure 2.3(b) is an example of the standard dome transfer method with a

zoomed-in nanobeam cavity to illustrate the scale of a photonic device [34]. The monolayer

was successfully transferred onto the nanobeam cavity. Note the monolayer is invisible under

an optical microscope due to the poor optical contrast on the silicon nitride substrate. The

dome stamp contaminated the waveguide with bulk material and tape residue which can

significantly alter the transmission properties of the devices, sometimes to an extent where no

transmission through the waveguide can be measured. The local transfer method described

below allows for the precise pickup and placement of vdW material flake without the usual

accompanying bulk material pieces.

The hemispherical dome stamp fabrication begins by preparing a 2-3 mm layer of cured

PDMS (SYLGARD™184 Silicone Elastomer) cut into 6 mm diameter rounds. A second batch

of PDMS is mixed from the silicone elastomer base with the curing agent, and placed in

vacuum for 20 minutes for degassing. The liquid PDMS is then pipetted onto the round layer

to form a hemisphere under the surface tension of the liquid. The domes are cured by leaving

them in vacuum for 24 hours (Fig. 2.3(c)).

The PC film (Sigma Aldrich® Poly(Bisphenol A carbonate), 7% solution in chloroform)

is secured to the hemispherical PDMS stamp using Scotch® tape with a hole punched into it

as a window (Fig. 2.3(d)). The sample stage is first set to 125 °C (Fig. 2.3(f)-1) and always

under vacuum to avoid picking up the chip. Under an optical microscope, the dome stamp is

lowered into minimal contact with the sample stage (Fig 2.3(f)-2). An SU-8 chip is used with

pillars of varying diameters for the sample stage as a visual reference in the point formation.

The dome is offset from the pillar, so it does not interfere with the melting PC. The SU-8

chip is not essential for the PC point formation. It is solely a pragmatic solution to making
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Figure 2.3: Material transfer schematic. a) 2D material transferred onto a nanobeam

cavity indicated by the arrows. The monolayer material is not visible on the SiN subtrate.

b) Bulk material on waveguides indicated by the arrows. Scale bars are 10 µm. c) Dome

stamp on a glass slide. d) PC film secured to the dome stamp with Scotch® tape. e) ≈ 1

mm drawn PC point indicated by the arrow. f) Visual schematic of the procedure described

in the text. Steps numbered 1-9. Purple is the stage substrate (e.g. SU-8 or SiO2) and teal is

the SiN waveguide. Dark gray is the glass slide, light gray is the PDMS dome, and black is

the PC film. Green is the vdW material.
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Figure 2.4: Material transfer example. a) Before pickup - CVD grown 2D material on

SiO2. b) After pickup with PC dome - CVD grown 2D material on SiO2. Any materials

picked up will be deposited onto the nanophotonic device. c) Before pickup – CVD-grown 2D

material on SiO2. d) After pickup with PC point – CVD-grown 2D material on SiO2 without

the removed monolayer WSe2 triangle. A small sliver of the monolayer’s edge is left behind.

Scale bars are 10 µm.
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a point with the same diameter as the monolayer sample to prevent picking up additional

material. The sample stage is then heated to 160 °C. After the stage equilibrates to the

new temperature, the sample stage temperature is again set to 125 °C. As the sample stage

decreases towards the lower temperature, the dome stamp is drawn away from the sample

stage to separate the PDMS stamp from the PC film, which will still be adhered to the sample

stage. The dome stamp is continuously pulled away from the substrate as a point is drawn in

the PC film commensurate with the monolayer sample (Fig. 2.3(f)-3). The point should be

formed before the sample stage reaches the polycarbonate glass transition temperature (147

°C). It is imperative to intentionally pull the newly formed point away from the stage after

the sample stage crosses the glass transition temperature (Fig. 2.3(e) and Fig. 2.3(f)-4).

During pickup of the monolayer it is important to ensure that the monolayer sample

is centered on the microscope objective along with the newly formed point (Fig. 2.3(f)-5).

As the hemispherical PDMS dome itself acts as a lens, the heated stage position has to be

adjusted to maintain the monolayer sample in the focal plane of the objective. The point will

manifest as a white disk. Pickup is performed by contacting the point to the monolayer (Fig.

2.3(f)-6 and Fig. 2.3(f)-7).

Finally, to transfer the monolayer onto a photonic device the point is again brought close

to the surface (Fig. 2.3(f)-8). Due to the suspended nature of the PC point, melting can

cause the point to droop unpredictably. For precise placement of the monolayer it is easiest

to rapidly lower the PDMS dome stamp into contact with the monolayer to anchor it to the

sample substrate (Fig. 2.3(f)-9). The temperature of the sample stage is then raised to 180

°C to detach the PC as a sacrificial layer from the PDMS stamp. The PC film is dissolved in

chloroform for 12 hours followed by a 30 minute isopropanol bath.

The main limitation of the dome stamp is that as the PC dome is lowered to a close

enough distance that the Newton’s rings can be seen, the dome will suddenly contact the

substrate with the previously mentioned 50 µm x µm area contact area (Fig. 2.4(a) and Fig.

2.4(b)). Anything in contact with the PC film will likely be picked up and transferred onto

the photonic device. By using the described local transfer method, it is possible pick up,
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for example, a single 10 µm2 triangle of CVD-grown monolayer WSe2 heavily surrounded by

unwanted material (Fig. 2.4(c) and Fig. 2.4(d)).

2.3.2 Experimental results and discussion

I first demonstrated the modified transfer method with the integration of WSe2 onto a

non-resonant nanophotonic device - a large-area silicon nitride (SiN) spiral (Fig. 2.5(a)).

Due to its large area, the transmission spectrum is known to be sensitive to contaminants

[85]. Then, resonant photonic devices were demonstrated by the dual integration of two

different semiconductor monolayers (WSe2, MoSe2) onto neighboring SiN ring resonators. As

the two monolayers are integrated in separate transfer steps the samples can be integrated as

a heterostructure or onto separate devices depending on the desired experiment.

The underlying nanophotonic devices were fabricated using a 220 nm thick SiN membrane

grown via LPCVD on 4 µm of thermal oxide on silicon. The samples were obtained from

commercial vendor Rogue Valley Microelectronics. Roughly 400 nm of Zeon ZEP520A was

spin-coated onto the silicon nitride chip which was coated with a thin layer of Pt/Au that

served as a charging layer. The resist was then patterned using a JEOL JBX6300FX electron-

beam lithography system with an accelerating voltage of 100 kV. The pattern was transferred

to the SiN using a reactive ion etch (RIE) in CHF3/O2 chemistry.

Photoluminescence (PL) measurements [86] were conducted by exciting the monolayers

with a 632 nm HeNe laser. The resulting emission was collected with a free-space confocal

microscopy setup and measured in a spectrometer. The spectrometer was a Princeton

Instruments IsoPlane SCT-320 Imaging Spectrograph. The transmission spectrum was

measured by exciting a grating coupler with a supercontinuum laser (Fianium WhiteLase

Micro) and collecting from the other grating coupler (Fig. 2.5(a), top right inset). For

cavity-coupled PL [6] the sample was directly excited with the HeNe laser and the resulting

emission was collected from a grating coupler using a pinhole in the image plane of the

confocal microscope. To obtain high signal-to-noise ratio PL the sample was cooled down to

80K using liquid nitrogen in a continuous flow cryostat (Janis ST-500).
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Figure 2.5: Silicon nitride spiral transfer. a) SEM image of a silicon nitride spiral. The

bottom right inset is a false-color SEM of the integrated monolayer WSe2. The top right

inset is the grating couplers (green - excitation, red - collection). Scale bar is 10 µm. b)

Room-temperature PL of the monolayer WSe2 integrated onto the silicon nitride spiral. c)

Transmission spectrum for the silicon nitride spiral. d) Transmission spectrum for the silicon

nitride spiral with the integrated monolayer WSe2.



25

Figure 2.6: Silicon nitride ring resonator transfer. Optical image of exfoliated WSe2

and MoSe2 monolayers integrated onto the left and top ring resonators, respectively, with

false-color SEM images of the integrated monolayers. Scale bar is 10 µm.

The room-temperature PL with a strong excitonic peak of the WSe2 monolayer integrated

onto the SiN spiral (Fig. 2.5(b)) establishes the presence of the vdW material on the waveguide

[77]. The primary peak is attributed to neutral exciton emission, which is indicative of a

direct bandgap, semiconducting material when the TMD vdW materials are exfoliated as

monolayers. The secondary sidebands are likely due to defects or trions [28, 87]. The before

and after transmission spectrum (Fig. 2.5(c) and Fig. 2.5(d), respectively) for the SiN spiral

waveguide integrated with the monolayer WSe2 illustrates the contamination-free nature of

the transfer process. Significant contamination would prevent any transmission spectrum from

being measured. The envelope modulation of the spectrum is due to the frequency-dependent

coupling efficiency of the grating couplers. The relative amplitude change between the two

features in the spectrum is likely due to the angular dependence of the grating couplers. As

the measurement is done before and after the transfer - which requires removing the sample

from the optical setup - the angular alignment of the confocal microscope objective to the

grating coupler will be slightly different [14].

The method can be extended to integrate vdW materials to disjoint but proximate vdW
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material photonic devices (Fig. 2.6). The four SiN ring resonators were each separated by 1

µm to ensure no coupling between cavities. Each cavity can be independently addressed by

input and output grating couplers. Again, the PL of the WSe2 and MoSe2 (Fig. 2.7(a) and

Fig. 2.7(d), respectively) establishes the presence of the monolayers. The low-temperature

transmission spectrum for the ring resonators (Fig. 2.7(b) and Fig. 2.7(e)) with the integrated

monolayers illustrates a contamination-free transfer. The dips in transmission correspond

to the resonance in the ring resonators. The separation between the modes corresponds to

the free spectral range of the ring resonator. The PL of the WSe2 and MoSe2 coupled to the

evanescent field of the ring resonators collected from the grating coupler (Fig. 2.7(c) and Fig.

2.7(f), respectively) was amplified at the cavity resonances.

2.3.3 Conclusion

A method was presented to facilitate the integration of vdW materials onto photonic devices

that require minimal contamination from bulk material. A PL measurement was used to

identify the presence of vdW materials on the photonic devices. The transmission spectrum

of the SiN spiral integrated with a monolayer material demonstrates the contamination-free

nature of the described transfer method. The integration of two different transition metal

dichalcogenide monolayers onto neighboring SiN ring resonators demonstrates the capability

to manually scale the fabrication of devices for rapid prototyping. This local transfer technique

can potentially enable a lithographically defined quantum emitter [88, 89] deterministically

integrated onto a nanocavity, which can reach the few-photon nonlinear optical regime [20, 30,

31] for applications in neuromorphic photonics [90, 91] and quantum many-body simulation

[92, 93].
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Figure 2.7: Ring resonator spectra with integrated monolayer WSe2 and MoSe2.

a) PL of the integrated WSe2 monolayer at 80 K. b) Transmission spectrum for the ring

resonator with the integrated monolayer WSe2. c) Cavity-coupled PL of the integrated

monolayer WSe2 on the ring resonator. d) PL of the integrated MoSe2 monolayer at 80 K.

e) Transmission spectrum for the ring resonator with the integrated monolayer MoSe2. f)

Cavity-coupled PL of the integrated monolayer MoSe2 on the ring resonator. The baseline

below the cavity resonance peaks in c and f is due to background PL.
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Chapter 3

LIGHT-MATTER INTERACTION

I derive a compact expression for the light-matter interaction strength between a single

quasinormal mode (QNM) of a dielectric microresonator and the two-dimensional excitonic

transition. The theoretical result of the light-matter interaction strength is applied to the

neutral exciton in a monolayer transition metal dichalcogenide (TMD) (MoSe2) evanescently

coupled to a silicon nitride, in-line photonic crystal defect resonator (PCDR). An optimal

spatial extent of the monolayer TMD that maximizes the light-matter interaction strength

was found due to the competition between minimizing the excitonic envelope function area

and maximizing the total integrated field. The theoretical estimate was then experimentally

corroborated by demonstration of a dispersive shift in the cavity transmission spectrum

observed as the exciton is temperature-tuned near the QNM.

An on-substrate PCDR was utilized to ensure mechanical stability needed for the two-

dimensional (2D) material transfer process. The microresonator was fabricated in silicon

nitride (SiN) used for its large optical bandgap (necessary for the frequencies of the excitonic

transition in TMDs) and a small thermo-optic coefficient. The latter is essential for the

temperature tuning utilized in the demonstration of a coherent interaction. Otherwise the

temperature dependence of the dispersive shift must be deconvolved from the temperature

shift of the QNM. In comparison, an encapsulating polymer on the microresonator can have

a significant effect on the resonant frequency [94].

The system was probed in transmission with the QNM red-detuned with respect to the

excitonic transition because as the cavity-coupled photoluminescence is known to be affected

by exciton-phonon interactions [95], discussed in chapter 4. The QNM was measured at

large exciton-cavity detunings due to a significant increase in insertion loss of the QNM in
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transmission at small detunings [96]. The extracted light-matter interaction strength from

the dispersive shift was h̄g ≈ 6.5 meV for an estimated cooperativity C = 4g2/(κ0γ
′
0) ∼ 4.0,

in which h̄γ′0 = 11.11 meV is the measured broadening of the TMD exciton at 80 K, and

h̄κ0 = 3.8 meV is the bare photonic mode linewidth measured without the TMD material.

The cooperativity is a measure of the polariton mode splitting visibility, where at C > 1 the

splitting is greater than the respective linewidths of the upper and lower polariton modes.

This experimental result compares favorably to the theoretical estimate of h̄g ≈ 4.2 meV.

The cooperativity can be further enhanced to C ∼ 380 at 4 K due to reduction of the exciton

decay rate and by increasing the QNM quality factor to 104, which is well within the reach of

current fabrication technology.

By applying an input-output theory approach to calculate the cavity transmission it

is shown that the transmission efficiency drops significantly for a resonant exciton-cavity

system. The predicted transmission suppression agrees with experimental observations [97].

Alternatively, it is shown that strong coupling can be probed in a transmission configuration

by exploiting a side-coupled cavity.

3.1 Exciton-photon coupling

3.1.1 Second quantized Hamiltonian

The electric-field operator can be expanded near the electromagnetic resonator as [98, 99]

Ê(r, ω) = i

√
h̄

2ε0

∑
µ

√
ωµf̃µ(r)α̃µ + H.a.. (3.1)

f̃µ is the QNM solution to the Helmholtz equation

∇×∇× f̃µ(r)−
ω̃2
µ

c2
ε0εR(r, ωµ)̃fµ(r) = 0 (3.2)

derived from the substitution of Eq. (2.1) into Eq. (2.2). c = 1/
√
ε0µ0 is the speed of light

in vacuum. For a single QNM Eq. (3.1) reduces to
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Ê(r) = i

√
h̄ωC
2ε0

√
S f̃C(r)a+ H.a. (3.3)

in a symmetrized basis to ensure the bosonic annihilation operator a satisfies canonical

commutation relations [98, 99].The S factor is a unitless quantity approximately equal to one

for a single QNM (S ≈ 1) [100, 101]. The subscript C on ωC and f̃C represents cavity.

The linear exciton-photon interaction associated with transitions between conduction and

valence bands for a single QNM is [49, 74]

W1 = h̄
∑
kα

â
(
gkαb

†
kα + g∗kαb−kα

)
+ H.a. (3.4)

summed over the in-plane wavevector k and the degenerate high-symmetry points α ∈ K,K ′

of the electronic band structure [76]. â (bkα) is the bosonic annihilation operator for the

QNM (exciton). The exciton-photon interaction strength is given by

h̄gkα =
|e|Pkα

m0

√
h̄

ε0ωk

〈v | r = 0〉. (3.5)

e is the elementary charge and m0 is the electron mass. The factor

Pkα =

∫
d3reik·ru∗c,α(r)̃fC · p̂uv,α(r) (3.6)

can be simplified by assuming QNM field profile is constant over the unit cell and the

wavevector k is small compared to the reciprocal lattice vector. Then the integral can be

written as the integral over a unit cell and a summation over all unit cells.

Pkα =
∑
j

eik·rj f̃c (rj, z0) · pαcv (3.7)

where pαcv =
∫
VUC

d3ru∗c,α(r)p̂uv,α(r) is the interband momentum matrix element. The

summation over j can then be rewritten as an integral:

Pkα =
1

S

∫
d3reik·rj f̃c (rj, z0) · pαcv. (3.8)
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Then the position space wavefunction of a 2D exciton 〈r | v〉 =
√

2
π

2
a0
e−2|r|/a0 [75] contributes

a factor of

〈v | r = 0〉 =

√
2

πa2
B

(3.9)

with an effective Bohr radius aB = a0/2, assuming equal electron and hole effective masses

[102]. Substitution of Eq. (3.8) and (3.9) into Eq. (3.5) becomes

h̄gkα =
|e|
m0

√
h̄

πε0ωa2
BS

∫
d2reik·rf̃C (r, z0) · pαcv. (3.10)

In a frame rotating at the frequency of an external pump laser, utilizing the rotating wave

approximation, the linear exciton-photon interaction reduces to

ĤI =
∑
αk

(
h̄gαkâcb̂

†
αk + h̄g∗αkâ

†
cb̂αk

)
(3.11)

A reaction coordinate (RC) mapping [103–105] can then be chosen in which the QNM coupled

to the bosonic environment of excitons in Eq. (3.11) is mapped to a collective excitonic

mode, called the exciton reaction coordinate, with the simplified light-matter interaction

Hamiltonian

ĤI = h̄G0

(
B̂0â

† + B̂†0â
)
. (3.12)

The light-matter interaction strength is then

G0 =

√∑
αk

|gαk|2 =

√∫
dωJRC(ω) (3.13)

characterized by an effective spectral density J(ω) =
∑

αk |gαk|
2 δ (ω − ωk). By inspection

the excitonic mode annihilation operator is

B̂0 =

[∑
αk

|gαk|2
]−1/2∑

αk

g∗αkb̂αk. (3.14)
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This can be extended to higher-order exciton modes

B̂i =
∑
αk

Uiαkb̂αk (3.15)

where the first row of the transformation matrix U is U0αk = g∗αk
(∑

αk |gαk|
2)−1/2

.

Substitution of Eq. (3.10) into Eq. (3.13) results in

h̄G0 =

√√√√ h̄e2

πε0m2
0ωa

2
B

1

S

∣∣∣∣∣∑
α

∫
d2r f̃C (r, z0) · pαcv

∣∣∣∣∣
2

(3.16)

≤
√

h̄e2

πε0m2
0ωa

2
B

1

S

∑
α

|ε̂ · pαcv|
2

∫
d2r
∣∣∣̃fC (r, z0)

∣∣∣ (3.17)

To relate the free parameters of Eq. (3.16) to quantities that can be experimentally deter-

mined, consider within the semi-classical Lorentz oscillator model the electric susceptibility

can be written as [75, 106]

χ(ω) =
e2

ε0m0V

∑
j

fj
ω2
j − ω2 − iγjω

(3.18)

with an oscillator strength fj at frequency ωj with a damping γj. The exciton oscillator

strength is evaluated in the effective mass approximation as

fε̂ =
∑
α

2 |ε̂ · pαcv|
2

m0h̄ω

∣∣∣∣∫ F (r = 0,R)dR

∣∣∣∣2 (3.19)

For free excitons in two dimensions, the exciton envelope function is 〈r,R | v〉 = S−1/2eik·R〈r |

v〉 where 〈r | v〉 is as described before Eq. (3.9). For a single excitonic transition the dielectric

function of a monolayer TMD , such as MoSe2, can be modeled as a Lorentzian oscillator

[107]

ε(ω) = εb +
A

ω2
X − ω2 − iγXω

. (3.20)
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εb is the background dielectric constant, where εb = 26 for MoSe2 [108], which results in a

perturbative shift of the cavity resonance. And

A =
e2

ε0m0V
fj (3.21)

=
e2

ε0m0V

∑
α

2 |ε̂ · pαcv|
2

m0h̄ω

∣∣∣∣∫ F (r = 0,R)dR

∣∣∣∣2 (3.22)

=
e2

ε0m0V

2p2
cv

m0h̄ω

2S

πa2
B

(3.23)

=
4e2p2

cv

πm2
0ε0h̄ωa

2
BLz

(3.24)

is an effective oscillator strength having dimensions of a squared frequency, ωX is the frequency

of the excitonic transition, and γX is the total exciton loss rate (including both radiative and

non-radiative contributions). The assumption going from Eq. (3.22) to Eq. (3.23) is the field

is polarized in-plane. The effective oscillator strength can be measured by fitting a transfer

matrix model to the differential reflectance, or reflection contrast, of the monolayer TMD

illuminated by a broad spectrum light source [107].

With p2
cv =

∑
α |ε̂ · pαcv|

2 substitution of Eq. (3.24) into Eq. (3.16) results in a compact

expression for the light-matter interaction strength

G0 =

√
A

2

√
Lz
Leff

. (3.25)

Lz is the effective thickness of the monolayer TMD and Leff is a length scale defined by the

competition between minimizing the excitonic envelope function area S and maximizing the

total integrated field.

1

Leff

=
1

S

(∫
d2r
∣∣∣̃fC (r, z0)

∣∣∣)2

. (3.26)
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3.1.2 Optimal material coverage

While this formalism can be applied to any extended 2D coherent media in confined cavity

geometries, this result is illustrated assuming parameters appropriate for a MoSe2 monolayer

deposited on a silicon nitride in-line nanobeam cavity, because such a system can be readily

fabricated in practice [97]. In the following, h̄2A = 0.4 eV2 is fixed as a representative

value from experimental reflectivity measurements [107] for monolayer MoSe2. Using a

finite difference time domain (FDTD) electromagnetic solver (from Lumerical-Ansys), the

cavity field profile is calculated (Fig. 3.6b) to be used into Eq. (3.26) with a resonance

at ωC/2π = 395.777 THz (wavelength of 757 nm). Taking the effective thickness of the

monolayer material to be equal to the measured one, LZ ≡ 0.7 nm, a maximal value for the

light-matter interaction is found for a monolayer length of 4.31 µm (Fig. 3.7). This result

runs counter to the result associated with the Dicke model, in which a giant oscillator is

expected to grow monotonically with the number of oscillators (g ∝
√
Ng0) [109], which in

this case correlates to the area of monolayer MoSe2 assuming the excitonic wavefunction

is delocalized over the entire field integration region. For a confined field in the cavity we

would then expect the light-matter interaction strength g to saturate with the length of the

monolayer material and not have a non-monotonic behavior as shown in Fig. 3.7.

Heuristically, this optimal condition between the 2D exciton envelope function and the

cavity field profile can be understood in terms of the light-matter interaction by recognizing

that the steady state electric field of the nanobeam cavity has an approximately Gaussian

envelope along the cavity axis, with a width σ (units of length) modulated by a sinusoidal

signal of the photonic lattice periodicity [67] (see, e.g., Fig. 3.6a). Assuming the length of the

coherent polarization due to the delocalized excitonic wavefunction is the same as the length

of the cavity integration, Lx, substitution of a Gaussian cavity field profile into Eq. 3.26 gives

a light-matter interaction strength of the form g ∝
√

1
Lx

∫ Lx/2
−Lx/2 e

− 1
2( xσ )

2

dx ∝
√

σ
Lx

erf( Lx
2
√

2σ
).

The latter function gives a peak in the light-matter interaction around 2.80σ, which roughly

corresponds with the 2.44σ that is numerically calculated for the designed in-line nanobeam
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cavity. In Fig. 3.7 this heuristic estimate is overlayed on top of the numerical simulation.

3.2 Light-matter interaction strength

A zero-dimensional (0D) PCDR integrated into a waveguide, also known as a nanobeam

cavity, was designed (Fig. 3.1a) and fabricated (Fig. 3.1b) in a SiN thin-film on a silicon

dioxide substrate with an estimated cavity mode volume V ∼ 2(λ/n)3, according to the

standard cavity QED definition [110]. Finite difference time domain simulations were used to

optimize the cavity design [34, 66, 111] with additional Bragg mirrors included to further

improve the cavity quality factor. Note that unlike most SiN photonic crystal cavities, this

design is an on-substrate cavity that is not suspended. The substrate underneath makes the

cavity quality factor lower than what can be achieved in a suspended cavity, but provides

the mechanical stability for easy transfer of 2D materials and cleaning of the chip. The bare

cavity transmission is interrogated via a confocal microscope using input and output grating

couplers with a ≈ 5 µm× 5 µm collection area and a 5-10% collection efficiency at the cavity

resonance frequency. A monolayer MoSe2 flake was then transferred onto the nanobeam via

the method described in chapter 2 to eliminate any bulk materials or tape residues on the

grating or the waveguide [112] (Figs. 3.1c, d). This coupled MoSe2-nanobeam device was

placed in a cryostat where the temperature was swept between 80 K and 200 K.

3.2.1 Device characterization

Monolayer MoSe2 exhibits poor optical contrast on the SiN substrate (Fig. 3.1b). Hence, the

presence of the monolayer on the nanocavity is confirmed by measuring the photoluminescence

(PL). A strong excitonic peak was observed in the PL spectrum (at 80K), as shown in Fig.

3.2a. When the PL is collected from a grating coupler (versus from the full field of view

of the confocal microscope), a cavity peak is clearly evidenced in the spectrum (Fig. 3.2b).

The background PL is also observed simultaneously due to imperfect spatial filtering in the

confocal microscope. Due to a limited field of view in the microscopy setup (≈ 50 µm×50 µm),

the cavity with transferred monolayer must be in close proximity to the output grating,
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Figure 3.1: Monolayer MoSe2 integrated onto a photonic crystal defect resonator.

a) Electric field intensity simulated at the center of the SiN nanobeam cavity by 3D-FDTD

at the cavity mode resonance frequency, showing wavelength scale field confinement. The

maximum field intensity is seen in the center of the nanobeam. b) Optical image of the

monolayer MoSe2 (not visible) integrated onto the nanobeam (orange box) with the grating

couplers for transmission measurements (green - excitation, red - collection). Scale bar is

10 µm. c) False color SEM image of the monolayer MoSe2 integrated onto the nanobeam.

(MoSe2 - gold, SiN - purple, SiO2 - teal). Scale bar is 1 µm. d) False color SEM image of

the monolayer MoSe2 integrated onto the nanobeam with deposited gold to prevent charging.

The obstruction of the nanobeam holes is made explicit. Red arrows indicate the cavity

center. Scale bar is 500 nm.
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making it difficult to spatially filter radiation scattered from the sample.

The nanobeam cavity was characterized via resonant transmission. A broadband super-

continuum laser was directed into one of the gratings and the transmitted radiation is collected

from the other grating. Prior to monolayer material integration, the cavity resonance was

measured at 300 K to be h̄ωC = 1595 meV with a linewidth h̄κ0 = 3.8 meV, corresponding

to a bare quality factor Q0 = 420 (Fig. 3.2c). After transfer of the monolayer MoSe2 the

bare cavity resonance was measured at 80 K to be h̄ωC = 1590 meV with a broadened

linewidth h̄κ = 10.7 meV, corresponding to a loaded quality factor Q = 149 (Fig. 3.2d). The

reduction in quality factor is attributed to the optical absorption of the monolayer MoSe2.

The shift in the resonance energy comes from the perturbation of the cavity due to the

background dielectric constant of the monolayer material and a dispersive shift of the cavity.

The dispersive shift is investigated via temperature tuning of the excitonic transition. It is

emphasized that as the linewidth of the monolayer MoSe2 is the dominant source of decay in

the coupled system, the observed quality factor of the cavity, albeit low, is sufficient to probe

the physical effect of coherent coupling.

3.2.2 Temperature dependence

The neutral exciton PL and cavity transmission were then concurrently measured as the

temperature was swept from 80K to 200K. At low temperature, the cavity mode is detuned

on the blue side of the excitonic resonance. As the temperature is increased the exciton

resonance redshifts, so the detuning between the exciton and cavity resonances decrease. The

excitonic PL spectra at different temperatures are fit with a Voigt function [113] to extract

the peak energy (ωX) and linewidth (γ) where the source of inhomogeneous broadening

(∆ = 4.42± 2.27 meV) is assumed to be independent of temperature [114].

The temperature dependence of the neutral exciton peak energy is fit to the standard
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Figure 3.2: Spectra for the monolayer MoSe2 integrated onto a photonic crystal

defect resonator. a) Photoluminescence of monolayer MoSe2 at 80 K. b) Cavity-coupled

photoluminescence of monolayer MoSe2 at 80 K. Primary peak is background photolumines-

cence. Secondary peak is collected from the grating coupler confirming cavity coupling. c)

Bare transmission spectrum of the nanobeam cavity at 300 K. The blue curve is a Lorentzian

fit to the cavity resonance. d) Transmission spectrum of the nanobeam cavity with an

integrated flake of monolayer MoSe2 at 80 K. The blue curve is a Lorentzian fit to the cavity

resonance.
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equation for the semiconductor bandgap [115] (Fig. 3.3a):

EX(T ) = EX(0)− S〈h̄ω〉[coth [〈h̄ω〉/(2kBT )]− 1]

≈ E ′X(0)− 2SkBT (3.27)

where EX(0) is the zero Kelvin neutral exciton energy, S is a dimensionless coupling constant,

and 〈h̄ω〉 is the average phonon energy. This relation corresponds to the neutral exciton

energy assuming the exciton binding energy is not strongly temperature dependent. In this

experiment, the temperature range explored remains in the linear regime at high temperatures.

A fit to the extracted energy of the neutral exciton provides a linearized zero Kelvin neutral

exciton energy of E ′X(0) ≡ EX(0)+S〈h̄ω〉 = 1637 meV and a dimensionless coupling constant

S = 1.21. These values are comparable to previous reports in the literature [116].

Similarly, the temperature dependence of the neutral exciton linewidth is fit to the Rudin

equation [117] (Fig. 3.3b):

γX(T ) = γ0 + c1T +
c2

eΩ/kBT − 1

≈ γ′0 +RkBT (3.28)

where γ0 is the intrinsic homogeneous linewidth, c1 includes exciton interactions with acoustic

phonons, c2 includes exciton interactions with longitudinal-optical phonons, and Ω is the

average phonon energy. In the linearized equation γ′0 = γ0 − c2
2

and R = c2
Ω

where it is

assumed c1 << c2. A fit to the extracted neutral exciton linewidth provides for an intrinsic

linewidth of h̄γ′0 = 5.77 meV and a dimensionless coupling constant R = 0.69. These values

are also comparable to previous reports in the literature [114].

It is worth noting the bare nanobeam cavity resonance wavelength does not significantly

shift with temperature, which is primarily due to the low thermo-optic coefficient of SiN

(Fig. 3.4a). The temperature-independent cavity resonance shift of ∼ 5 meV (comparing

Fig. 3.2a and Fig. 3.2b) is consistent with the cavity perturbation theory [118, 119], where

the monolayer material is modelled as a d = 0.7 nm thick homogeneous dielectric with

an nB =
√
εB index of refraction where εB = 26 is the background dielectric constant for
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Figure 3.3: Temperature dependence of the neutral exciton resonance in MoSe2. a)

Temperature dependence of the neutral exciton resonance.The black dots are the neutral

exciton energy observed in the photoluminescence spectrum fit to a Voigt function. The blue

line is a fit to Eq. 3.27. b) Temperature dependence of the neutral exciton linewidth. The

black dots are the neutral exciton linewidth observed in the photoluminescence spectrum fit

to a Voigt function. The blue line is a fit to Eq. 3.28.
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monolayer MoSe2 [107]. In the TMD-coupled nanobeam resonator a shift in the cavity

resonance is clearly observed as the exciton-cavity detuning decreases (Fig. 3.4b). We

attribute this shift to the dispersive coupling of the 2D excitons in the monolayer MoSe2 to

the 0D nanobeam cavity mode, which is hereby established via a simple coupled oscillator

model. We note that the cavity transmission is significantly suppressed as the exciton is

brought into resonance with the cavity (Fig. 3.9a). Additionally, the exciton linewidth

increases at higher temperatures precluding the observation of avoided crossing, a hallmark

of strong coupling, in the reported system. This is a critical limitation of the temperature

tuning. Other tuning mechanisms, such as gas tuning [120], have been considered but the

effect of deposited xenon and nitrogen gas on 2D materials leads to inconclusive results.

It is worth noting the bare nanobeam cavity resonance wavelength does not significantly

shift with temperature, which is primarily due to the low thermo-optic coefficient of SiN (Fig.

3.4a). However, in the TMD-coupled nanobeam resonator a shift in the cavity resonance was

clearly observed as the exciton-cavity detuning decreases (Fig. 3.4b). We attribute this shift

to the dispersive coupling of the 2D excitons in the monolayer MoSe2 to the zero-dimensional

(0D) nanobeam cavity mode, which is hereby established via a simple coupled oscillator

model.

3.2.3 Coupled oscillator model

A homogeneous distribution of TMD excitons and a single 0D cavity mode can be phenomeno-

logically modeled with a Hamiltonian describing two coupled oscillators, wherein the exciton

and cavity degrees of freedom coherently interact via an exciton-cavity coupling rate, g. The

bare oscillator resonance frequencies are measured with respect to a rotating frame at the

resonant driving frequency, ωL. The Hamiltonian is

HXC = h̄∆CLâ
†â+ h̄∆XLb̂

†b̂+ h̄g(b̂†â+ b̂â†) , (3.29)

where ∆XL = ωX − ωL and ∆CL = ωC − ωL are the detunings of the exciton and cavity

modes from the laser frequency, respectively; b̂ (â) is the annihilation operator for the exciton
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Figure 3.4: Temperature dependence of the monolayer MoSe2 integrated onto

a photonic crystal defect resonator. a) Representative transmission spectra of the

nanobeam cavity without an integrated flake of monolayer MoSe2 at 100 K to 200 K in

20 K increments. b) Representative transmission spectra of the nanobeam cavity with an

integrated flake of monolayer MoSe2 at 80 K to 200 K in 20 K increments. b) Dispersive shift

of the cavity resonance in transmission.
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(cavity) mode. In the weak excitation regime, exciton saturation and any exciton-exciton

interaction can be neglected. Hence, both exciton and cavity operators can be treated as

bosonic modes. Including losses, the model can be completed by defining the Liouvillian

operator for the density matrix, L(ρ) = 1
ih̄

[H, ρ] + h̄κLâ(ρ) + h̄γLb̂(ρ), which accounts for the

finite cavity and exciton linewidths. The Lindblad operators are Lξ(ρ) = ξρξ†− 1
2
ξ†ξρ− 1

2
ρξ†ξ,

in which ξ = b̂, â.

By diagonalizing the Liouvillian within the single excitation subspace, the following

eigenenergies can be obtained [48, 110, 121, 122]

ω± = ωC +
∆XC

2
− iκ+ γ

2
±
√
g2 +

1

4
[∆XC + i(κ− γ)]2 , (3.30)

in which ∆XC = ωX − ωC is the exciton-cavity detuning. The experimental data is fit with

Eq. 3.30 for an exciton-cavity coupling energy h̄g = 6.47 ± 0.39 meV (Fig. 3.4b). Near

zero exciton-cavity detuning transmission spectra were not included due to the reduced

transmission efficiency inherent to the in-line cavity design [96]. It should be noted the

exciton PL peak energy is used as a proxy for the absorption resonance, since MoSe2 is known

to have a small Stokes shift [29] which in this case is approximately 1 meV. The extracted

light-matter interaction is similar to related nanophotonic structures, although it is expected

to be larger with an optimal coverage of the cavity mode [95, 97].

Figure 3.5 is an alternative plot demonstrating the subtle dispersive shift of the cavity

as the exciton-cavity detuning is decreased. The blue diagonal line tracks the peak of the

neutral exciton photoluminescence in monolayer MoSe2. The orange vertical line tracks what

would be the temperature-independent cavity resonant frequency due to the low thermo-optic

coefficient of silicon nitride. The curved purple line tracks the peak of the cavity transmission

spectrum showing the avoided crossing of the cavity resonant frequency and the excitonic

transition. The photoluminescence is the total emission of the monolayer flake. Should it be

possible to observe the photoluminescent emission solely at the center of the cavity mode we

would expect to see level repulsion of the exciton resonant frequency as well.

The light-matter coupling energy was theoretically estimated to be h̄g = 4.2 meV from Eq
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Figure 3.5: Overlayed plots of the cavity transmission (left peak) and MoSe2 photolumines-

cence (right peak). The center frequency of the neutral exciton exhibited in the photolumi-

nescence is plotted in Fig. 3.3a. The center frequency of the cavity resonance is plotted in

Fig. 3.4c with respect to the exciton detuning from the bare cavity resonant frequency.
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(3.25). Qualitative agreement with the value extracted from the dispersive shift is attained

when assuming a 2D flake coverage of the nanocavity compatible with the one inferred from

the sample SEM (Fig. 3.1d). A maximal simulated exciton-cavity coupling energy h̄g = 5.1

meV is obtained for this cavity design when the 2D flake extension matches the spatial

envelope of the cavity mode electric field. Note that the experimentally measured value of h̄g

is slightly larger than the theoretical prediction. This is attributed to reduced confinement

of the electromagnetic field in the cavity due to fabrication imperfections (such as sidewall

roughness), and thus a stronger field on the cavity surface than the theoretical design.

3.3 Input-output relations

Now explicitly consider the experimental scheme allowing to probe the polariton excitations

in the material system. Often, such light-matter coupled systems are measured via incoherent

photoluminescence; however, coherent driving in a transmission configuration is necessary

in view of practical development of quantum technology applications [123]. For the on-chip

microresonator, the exciton-polariton modes can generally be probed using a two-sided cavity

[68] (Fig. 3.6a). An input grating is used to send light to the coupled system and the

transmitted light is collected via an output grating.

The input-output relation for the exciton-resonator system in the linear regime is similar

to that found for the side-coupled resonator with two degenerate modes owing to the bosonic

nature of the excitonic transition. The Hamiltonian (compare to Eq. (3.29)) describing

the in-line, single-mode electromagnetic resonator and the localized excitonic mode as two

coupled oscillators is

ĤXC = h̄∆̃CLâ
†â+ h̄∆̃XLb̂

†b̂+ h̄g(b̂†â+ b̂â†) (3.31)

with a light-matter interaction strength g. ∆̃CL = (ωC−ωL)− iκ and ∆̃XL = (ωX−ωL)− iγX
are the detunings and intrinsic radiative loss of the resonator mode (ωC , κ) and excitonic

transition (ωX , γX) from the laser frequency (ωL), respectively. â (b̂) is the bosonic annihilation

operator for the resonator (excitonic) mode.
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3.3.1 In-line resonator

For an in-line resonator, the quantum Langevin equations describing the internal resonator

and excitonic modes with a single external driving field are

dâ

dt
= − i

h̄
[â, ĤXC ]− γ1

2
â− γ2

2
â+
√
γ1âin (3.32)

db̂

dt
= − i

h̄
[b̂, ĤXC ]. (3.33)

Eq. (3.32) is identital to that of Eq. (2.7) except the modified Hamiltonian. The transmitted

field âout is coupled to the resonator via γ2, as described by the equation

âout =
√
γ2â. (3.34)

Inserting Eq. (3.31) into Eqs. (3.32) and (3.33), and then computing the commutator gives

dâ

dt
= −iω̃C â− igb̂−

γ1

2
â− γ2

2
â+
√
γ1âin (3.35)

db̂

dt
= −iω̃X b̂− igâ. (3.36)

Following identical steps which concluded with Eq. (2.15), the transmission efficiency is

T (ω) =

∣∣∣∣ ãoutãin

∣∣∣∣2 =

∣∣∣∣∣
√
γ1γ2

−i(ω − ω̃C) + 1
2
(γ1 + γ2) + g2

−i(ω−ω̃X)

∣∣∣∣∣
2

. (3.37)

Collecting real and imaginary components of the expression, this can be rewritten as

T (ω) =

∣∣∣∣∣∣
√
γ1γ2

−i
[
(ω − ωC)− (ω−ωX)g2

(ω−ωX)2+γ2
X

]
+
[

1
2
(γ1 + γ1) + κ+ γXg2

(ω−ωX)2+γ2
X

]
∣∣∣∣∣∣
2

(3.38)

The transmitted spectrum is then
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T (ω) =
γ1γ2[

ω − ωC − (ω−ωX)g2

(ω−ωX)2+γ2
X

]2

+
[
κ+ 1

2
(γ1 + γ2) + γXg2

(ω−ωX)2+γ2
X

]2 . (3.39)

For an in-line resonator symmetrically coupled to the waveguide (γ = γ1 = γ2), the transmitted

spectrum of the exciton-resonator system is

T (ω) =
γ2[

ω − ωC − (ω−ωX)g2

(ω−ωX)2+γ2
X

]2

+
[
κ+ γ + γXg2

(ω−ωX)2+γ2
X

]2 . (3.40)

The minima for Eq. (3.40) in the strong coupling regime at zero exciton-cavity detuning

(setting ω = ωC = ωX) gives a transmission of

T =

(
γ

κ+ γ

)2
1

(1 + C)2 (3.41)

where the cooperativity is defined as C ≡ g2

γX(κ+γ)
, which effectively quantifies the visibility of

the polariton modes. In the absence of an optical transition this reduces to the Tmax discussed

in section 2.1.2.

At zero exciton-cavity detuning (ωC = ωX) by setting the derivative of Eq. (3.40) equal

to zero (dT
dω

= 0) there exists a maxima at ω± = ωC ±
√
C ′g2 − γ2

X associated with normal

mode splitting in the strong coupling regime. Substituting ω± into Eq. (3.40), the peaks

have a transmission efficiency of

T (ω±) =
γ2C ′

g2 (C ′ − 1)2 + [(κ+ γ)2 − γ2
X ]C ′ + 2γX [(κ+ γ) + γX ]

. (3.42)

where a new constant is defined C ′ =
√

1 + 2
C

[1 + γX/(κ+ γ)].

The intrinsic cavity loss and cavity-waveguide coupling can be inferred from the FDTD

simulations. The designed in-line nanobeam cavity has a loaded quality factor of Qloaded =

11924 and an intrinsic quality factor of Qintrinsic = 25480. The intrinsic quality factor of

the cavity is found by increasing the number of Bragg mirror holes until the waveguide is

no longer coupled to the cavity and the simulated quality factor approaches an asymptotic
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Figure 3.6: Schematic of the input-output characteristics of a two-sided cavity. a)

Top-view pictorial representation of a photonic crystal defect cavity embedded in-line to a

waveguide, coupled to a quantum well supporting a two-dimensional excitonic transition.

Blue is the confining dielectric and orange is the quantum well. γ1,2 are the waveguide-coupled

losses. LX is the length of the integrated quantum well. LY is the width of the integrated

quantum well. b) Side-view of the waveguide. κ and γX are the intrinsic losses of the cavity

and exciton, respectively. LZ is the effective height of the integrated quantum well. b)

Electric field intensity simulated at the center of a silicon nitride nanobeam cavity by a

finite-difference time-domain electromagnetic solver at the cavity mode resonant frequency,

showing wavelength scale field confinement. The maximum field intensity is seen in the center

of the nanobeam.
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Figure 3.7: Optimal condition for the light-matter interaction strength. Light-

matter interaction strength for different lengths LX of the integrated quantum well with LY

fixed to the width of the waveguide. The oscillations seen in the light-matter interaction

originate from the periodic variation of the electric field commensurate with the lattice spacing

of the nanobeam air holes. g/2π = 1.2389 THz is the maximum value for this cavity design

and oscillator strength. The dotted line is a fit to the heuristic equation in the text elucidating

the peak in the light-matter interaction for a cavity confinement length of σ = 1.77 µm.



50

value. Note that for this particular cavity, the design is chosen for an on-substrate, silicon

nitride, in-line, nanobeam cavity due to its mechanical stability [34], hence the reduced

quality factor compared to a suspended nanobeam cavity. The decay rate of the cavity

field is κ = 1
2

ωC
Qintrinsic

= 2π × 7.77 GHz. Similarly, the decay rate of the loaded cavity

field is κ + γ = 1
2

ωC
Qloaded

= 2π × 16.6 GHz, which gives a waveguide-coupled field decay

rate γ = 2π × 8.83 GHz. This results in an estimated maximum transmission efficiency of

Tmax =
(

γ
κ+γ

)2

= 0.28 [70]. From the measured temperature dependence of the excitonic

transition γX(4.2K) = 2π × 566 GHz is used as a representative value for the excitonic

linewidth in the strong coupling regime.

The transmission spectrum of the coupled exciton-cavity system is calculated using these

estimated values of the system parameters (Fig. 3.8a). At large exciton-cavity detuning the

transmission efficiency approaches the bare cavity value Tmax. At smaller detunings, the

dispersive cavity shift is noticeable with broadening of the transmission peak. Near zero

detuning, however, the intensity of the transmission peak in the strong coupling regime is

several orders of magnitude smaller than the bare cavity transmission (Fig. 3.8b). Substituting

the parameters, for example, from Fig. 3.8 into Eq. 3.42 the maximum transmission efficiency

with the integrated 2D exciton relative to the bare cavity transmission maximum is only

0.098%. Thus a major drawback of an in-line symmetric two-sided cavity is the drastic

suppression of transmission near zero exciton-cavity detuning. Note that, suppression of the

cavity transmission was observed in experiment as the exciton is brought into resonance with

the cavity (Fig. 3.9).

3.3.2 Side-coupled resonator

The drastic reduction in the transmission efficiency of an in-line cavity primarily comes

from the large excitonic loss rate γX . To ensure an appreciable transmission efficiency, the

waveguide-cavity coupling rate (γ) can be increased. But this will reduce the quality factor

of the cavity and reaching the strong coupling regime may not be possible. The difficulty

of demonstrating high transmission efficiency of the cavity mode near zero exciton-cavity
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Figure 3.8: Transmission efficiency of a two-sided cavity with an integrated exci-

tonic transition. a) Transmission spectrum relative to Tmax (Trelative = T (ω)/Tmax) at

different exciton-cavity detunings ∆XC . ∆CL = ωC − ωL is the laser detuning from the bare

cavity resonance. For clarity, the transmission spectrum are offset by 0.5 from the lower to

upper plots. b) Transmission spectrum relative to Tmax at zero exciton-cavity detuning. The

solid line in part (b) is the magnified solid line of part (a). Note the different x-axis range.

Parameters: κ/2π = 7.77 GHz, γ/2π = 8.83 GHz, γX/2π = 566 GHz, g/2π = 1.2389 THz.
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Figure 3.9: Cavity transmission suppression at small exciton-cavity detunings. On

a second device: a) Transmission spectra at different exciton-cavity detunings. Note a

factor of five reduction in transmission intensity even at large detunings which precludes

on-resonance transmission measurements, hence the dispersive regime. b) Dispersive shift of

the cavity resonance in transmission for a radiation-matter coupling of h̄g = 8.17± 0.36 meV

commensurate with that found in the main device with a different areal coverage.
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detuning stems from the mismatch between the loss of the hybridized polariton mode and

waveguide-coupled loss [124, 125]. This effect is similar to the condition of reaching critical

coupling in a waveguide-coupled microring resonator [65]. One way to circumvent this loss in

transmission will be to employ a side-coupled waveguide-cavity system [126]. By engineering

the side-coupled, waveguide-cavity coupling rate (γSC) the radiative loss of the polariton

can be kept relatively low while still maintaining sufficient waveguide-coupling to observe

polariton modes in transmission.

In a side-coupled nanobeam cavity, by modifying the width and the gap of the coupled

waveguide to the nanobeam cavity the waveguide-coupled loss can be engineered. Such

side-coupled geometry partially decouples the intrinsic cavity quality factor and field profile

from the transmission properties of the cavity. We analyze the performance of such a

side-coupled cavity and found that significant transmission contrast can be achieved in the

strong coupling regime (Fig. 3.10a). Reaching critical coupling in the side-coupled cavity

design requires the waveguide-cavity coupling rate to be the same as the polariton loss,

which is necessarily no longer in the strong coupling regime. However, in the under-coupled

regime, by carefully choosing the waveguide-cavity coupling rate we can achieve a measurable

transmission contrast, as we verified numerically (Fig. 3.4b). The side-coupled, waveguide-

cavity coupling rate (γSC) essentially provides an additional degree of freedom for cavity

design that is absent in in-line cavities.

For a single-mode, side-coupled resonator the quantum Langevin equations describing the

internal resonator and excitonic modes with a single external driving field are

dâ

dt
= − i

h̄
[â, ĤXC ]− i√γSC âin (3.43)

db̂

dt
= − i

h̄
[b̂, ĤXC ]. (3.44)

The transmitted field âout is coupled to the resonator via γSC , as described by the equation

âout = âin − i
√
γSCa (3.45)
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Figure 3.10: Schematic of the input-output characteristics and transmission effi-

ciency of a side-coupled cavity with an integrated excitonic transition. a) Top-view

pictorial representation of a photonic crystal defect cavity side-coupled to a waveguide, coupled

to a quantum well supporting a two-dimensional excitonic transition. Blue is the confining di-

electric and orange is the quantum well. γSC is the waveguide-coupled loss for the side-coupled

cavity. b) Side-coupled transmission spectrum for increasing values of the waveguide-coupled

loss. Parameters: κ/2π = 7.77 GHz, γX/2π = 566 GHz, g/2π = 1.2389 THz.
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Following identical steps which concluded with Eq. (3.40), the transmission efficiency is

T (ω) =

∣∣∣∣ ãoutãin

∣∣∣∣2 =

∣∣∣∣1− iγSC(ω − ω̃X)

(ω − ω̃C)(ω − ω̃X)− g2

∣∣∣∣2 . (3.46)

Collecting real and imaginary components of the expression, this can be rewritten as

T (ω) =

∣∣∣∣ [g2 + γX(κ− γSC)− (ω − ωC)(ω − ωX)]− i [γX(ω − ωC) + (κ− γSC)(ω − ωX)]

[g2 + γXκ− (ω − ωC)(ω − ωX)]− i [γX(ω − ωC) + κ(ω − ωX)]

∣∣∣∣2 .
(3.47)

For a single-mode, side-coupled resonator the transmitted spectrum of the exciton-resonator

system is then

T (ω) =
[g2 + γX(κ− γSC)− (ω − ωC)(ω − ωX)]

2
+ [γX(ω − ωC) + (κ− γSC)(ω − ωX)]2

[g2 + γXκ− (ω − ωC)(ω − ωX)]2 + [γX(ω − ωC) + κ(ω − ωX)]2
.

(3.48)

Significant transmission contrast can still be achieved in the side-coupling geometry while

remaining in the strong coupling regime (Fig. 3.10b). Reaching critical coupling in the

side-coupled cavity design requires the waveguide-cavity coupling rate to be the same as

the polariton loss, which is necessarily no longer in the strong coupling regime. However,

in the under-coupled regime, by carefully choosing the waveguide-cavity coupling rate a

measurable transmission contrast can be achieved, as verified numerically. The side-coupled,

waveguide-cavity coupling rate (γSC) essentially provides an additional degree of freedom for

cavity design that is absent in in-line cavities.

3.4 Discussion

A theoretical and experimental estimate of the light-matter interaction strength was de-

termined for a monolayer TMD excitonic transition integrated onto a PCDR (h̄g = 6.5

meV). An optimal condition for the of monolayer length was found for observation of avoided

crossing in this material system. Despite the improved cooperativity (C = g2

γX(κ+γ)
) found by

maximizing the light-matter interaction, the small transmission efficiency remains a challenge
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to experimentally probe the strong coupling regime [97]. This low transmission efficiency may

be avoided by decoupling the waveguide-coupled loss from the intrinsic cavity loss, using a

side-coupled nanobeam or ring resonator [70, 126]. This allows for an extra degree of freedom

to increase the waveguide-coupled loss at a similar rate to that of the cavity broadening from

the perturbing monolayer MoSe2. The limiting factor in this material system is the linewidth

of the neutral exciton in monolayer MoSe2. hBN encapsulation is a means to narrow the

linewidth by modifying the dielectric environment and reducing sample inhomogeneity [127].

However, experiment may be better served by pursuing two-dimensional excitonic transitions

with intrinsically narrow linewidths [128].

Additionally, the difficulty remains in the necessary tuning range of the microresonator

and/or exciton resonance to best observe an avoided crossing due to the large linewidth

of the excitonic transition. Temperature tuning was used as it is the only mechanism to

provide sufficient range of the exciton-cavity detuning to make observation of a coherent

interaction in a dispersionless cavity. The disadvantage to temperature tuning is the increased

linewidth of the exciton transition at elevated temperatures preventing the observation of

strong coupling. As such, a tunable nanocavity at low temperature is necessary to observe

strong coupling with a broad optical transition. The quantum confined Stark effect is a

possible in situ mechanism for tuning of the excitonic transition, however the in-plane nature

of the intralayer exciton dipole moment with an out-of-plane electric field does not have

sufficient tuning range to be practically useful [129]. A hetero-bilayer structure supporting

interlayer excitons has a distinct advantage as the excitations then support a dipole moment

aligned to an out-of-plane electric field [130]. An alternative form of digital tuning would be

to transfer a large-area of monolayer TMDs grown via chemical vapor deposition [131, 132]

onto an array of nanobeam cavities with different resonant wavelengths. This would allow for

the simultaneous observation of multiple exciton-cavity detunings on many devices.
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Chapter 4

EXCITON-PHONON INTERACTION

A necessary step for elucidating the potential applications of microresonator quantum

electrodynamics (cQED) is an understanding of the relevant underlying physics of the light-

matter interaction. The prevailing description of the interaction between quasinormal modes

of dielectric microresonators and the excitonic transition in transition metal dichalcogenides

(TMDs) largely neglects the role of the solid-state environment. However, exciton-phonon

interactions are known to have a significant effect on the neutral exciton photoluminescence

(PL) [102, 133–138]. In other solid-state cQED systems, such as self-assembled quantum dots

coupled to nanocavities, the exciton-phonon interaction is known to cause an asymmetric

photoluminescent lineshape in the form of phonon sidebands as well as modify the cavity-

coupled photoluminescence [123, 139, 140]. For TMDs coupled to whispering gallery mode

resonators the excitonic photoluminescent emission into the cavity modes appear preferentially

coupled to the red-detuned side of the excitonic resonant frequency [6, 112, 141, 142]. This

asymmetric coupling, which is not predicted by the simple coupled oscillator model for the

light-matter interaction, points to important missing elements in the model.

Interactions of acoustic phonons with the excitonic transition is shown to play a role in

the cavity-coupled photoluminescence of monolayer TMDs and dielectric microresonators.

The coupled oscillator model for the coupling of the TMD neutral excitonic transition to

a quasinormal mode (QNM) [20, 143, 144] is modified to include a deformation potential

interaction used to model the exciton-phonon interaction [145, 146], similar to the studies

in self-assembled quantum dots coupled to photonic crystal defect resonators (PCDRs). An

effective master equation is employed to describe phonon-mediated decay processes and

incoherent exciton-cavity coupling [147]. Experimentally, monolayer WSe2 is transferred onto
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a silicon nitride ring resonator which allows for the simultaneous measurement of multiple

QNMs at different exciton-cavity detunings. The model exhibits preferential coupling of the

exciton emission to red-detuned cavity modes, faithfully reproducing the experimental data.

The theoretical model is further validated with a prediction and experimental confirmation

that the asymmetry decreases with increasing temperature.

The Hamiltonian description of our system begins with the coupled oscillator model HXC

(Eq. (3.29)) wherein the exciton ∆XL = ωX − ωL and cavity ∆CL = ωC − ωL resonances,

measured with respect to a rotating frame at the resonant drive frequency ωL, interact via an

exciton-cavity coupling g [20, 143]. The deformation potential exciton-phonon Hamiltonian

(HXP = HP +WXP ) [145, 146] is a simplified model to account for effects of the solid state

environment similar to that seen in the spin-boson model [148, 149] or for optomechanical

systems [150]. In the deformation potential exciton-phonon interaction

WXP = h̄
∑
q,k,k′

λk,k
′

q b̂†k′ b̂k(ĉq,k′−k + ĉ†q,k−k′) (4.1)

the exciton number operator is coupled to a bath of harmonic oscillators HP =
∑

q h̄ωq ĉ
†
q ĉq

with frequency ωq and coupling λk,k′q . For small momentum transfer (k′ ≈ k) we can substitute

the exciton reaction coordinate. The exciton-phonon interaction then reduces to

WXP = h̄b̂†b̂
∑
q

λq(ĉq + ĉ†q) (4.2)

The total Hamiltonian is H = HXC +HD +HXP and

HXC = h̄∆CLâ
†â+ h̄∆XLb̂

†b̂+ h̄g(b̂†â+ b̂â†) (4.3)

HD = h̄ηX(b̂+ b̂†) (4.4)

HXP =
∑
q

h̄ωq ĉ
†
q ĉq + h̄b̂†b̂

∑
q

λq(ĉq + ĉ†q). (4.5)

â (b̂) is the annihilation operator for the cavity (excitonic) mode. In the weak excitation

regime, exciton saturation and any exciton-exciton interaction is neglected. Hence, both the



59

exciton and cavity operators can be treated as bosonic. ηX is the amplitude of a coherent

drive for the excitonic transition.

4.1 Polaron transformation

In order to distinguish the observed neutral exciton from the effects associated with phonon

bath induced fluctuations, the polaron transformation P = b̂†b̂
∑

q
λq
ωq

(ĉ†q−ĉq) is used withH →

ePHe−P [149, 151]. Using the identity eXY e−X = Y +[X, Y ]+ 1
2!

[X, [X, Y ]]+ 1
3!

[X, [X, [X, Y ]]]+

· · · and that â, b̂, and ĉ are all bosonic operators (e.g. [â, â†] = 1) leads to

∆XLb
†b→ ∆XLb

†b

∆CLa
†a→ ∆CLa

†a

b†b
∑
q

λq(cq + c†q)→ b†b
∑
q

λq(cq + c†q)− 2(b†b)2
∑
q

λ2
q

ωq

= b†b
∑
q

λq(cq + c†q)− 2(b†b)2∆P

∑
q

ωqc
†
qcq →

∑
q

ωqc
†
qcq − b†b

∑
q

λq(cq + c†q) + (b†b)2
∑
q

λ2
q

ωq

=
∑
q

ωqc
†
qcq − b†b

∑
q

λq(cq + c†q) + (b†b)2∆P
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g(b†a+ a†b) + ηX(b+ b†)→ g(b†a+ a†b) + ηX(b+ b†)

+ [
∑
q

λq
ωq

(c†q − cq)][g(b†a− a†b) + ηX(b− b†)]

+ [
∑
q

λq
ωq

(c†q − cq)]2[g(b†a+ a†b) + ηX(b+ b†)]

+ [
∑
q

λq
ωq

(c†q − cq)]3[g(b†a− a†b) + ηX(b− b†)] + · · ·

= exp[
∑
q

λq
ωq

(c†q − cq)](gb†a+ ηXb) + exp[−
∑
q

λq
ωq

(c†q − cq)](ga†b+ ηXb
†)

= g(C+b
†a︸ ︷︷ ︸

1

+C−a
†b︸ ︷︷ ︸

2

) + ηX(C+b
†︸︷︷︸

3

+ C−b︸︷︷︸
4

)

=
1

2
[gC+a

†b︸ ︷︷ ︸
I

+ gC+b
†a︸ ︷︷ ︸

1

+ ηXC+b︸ ︷︷ ︸
III

+ ηXC+b
†︸ ︷︷ ︸

3

+ gC−a
†b︸ ︷︷ ︸

2

+ gC−b
†a︸ ︷︷ ︸

II

+ ηXC−b︸ ︷︷ ︸
4

+ ηXC−b
†︸ ︷︷ ︸

IV

+ gC+b
†a︸ ︷︷ ︸

1

− gC+a
†b︸ ︷︷ ︸

I

+ ηXC+b
†︸ ︷︷ ︸

3

− ηXC+b︸ ︷︷ ︸
III

− gC−b†a︸ ︷︷ ︸
II

+ gC−a
†b︸ ︷︷ ︸

2

− ηXC−b†︸ ︷︷ ︸
IV

+ ηXC−b︸ ︷︷ ︸
4

]

=
1

2
(C+ + C−)[g(a†b+ b†a) + ηX(b+ b†)]

+
1

2
(C+ − C−)[g(b†a− a†b) + ηX(b† − b)]

=
1

2
(C+ + C−)Xg +

1

2i
(C+ − C−)Xu

=
1

2
(C+ + C− − 2〈C〉)Xg + 〈C〉Xg +

1

2i
(C+ − C−)Xu

= ζgXg + ζuXu + 〈C〉Xg
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The polaron shift is defined ∆P =
∑

q

λ2
q

ωq
=
∫∞

0
dωJ(ω)/ω and the exciton-cavity coupling

terms

Xg = h̄g(a†b+ b†a) + h̄ηX(b+ b†)

Xu = ih̄g(b†a− a†b) + ih̄ηX(b† − b)

J(ω) is the phonon spectral function. The bath displacement operators C± = exp
[
±
∑

q
λq
ωq

(cq − c†q)
]

are included in the exciton-cavity prefactors

ζg =
1

2
(C+ + C− − 2〈C〉)

ζu =
1

2i
(C+ − C−)

where 〈C〉 = 〈C+〉 = 〈C−〉. The resulting system, bath, and interaction Hamiltonian give

H ′S = h̄∆CLa
†a+ h̄∆XLb

†b− h̄∆P (b†b)2 + 〈C〉Xg (4.6)

= h̄∆CLa
†a+ h̄(∆XL −∆P )b†b− h̄∆P b

†b†bb+ 〈C〉Xg (4.7)

H ′B =
∑
q

h̄ωqc
†
qcq (4.8)

H ′I = Xgζg +Xuζu (4.9)

Eq. (4.7) is the effective Hamiltonian describing the transformed system [148, 150, 152, 153].

The exciton resonance ∆′xL = ∆xL − ∆P is renormalized by a polaron shift ∆P =
∑

q

λ2
q

ωq
,

which is analogous to a Lamb shift [154]. When the harmonic oscillator bath is written in

terms of the phonon displacement operator C± = exp
[
±
∑

q
λq
ωq

(cq − c†q)
]
the exciton-cavity

coupling is modified from the bare value by the average phonon displacement 〈C〉

〈C〉 = exp

[
−1

2

∑
q

(
λq
ωq

)2

(2n̄q + 1)

]

where n̄q = [eβh̄ωq − 1]−1 is the mean phonon number with bath temperature T = 1/kBβ

[155]. As the temperature increases, the average phonon number in each mode increases,

which decreases the light-matter interaction strength.
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4.2 Effective master equation

The Markovian time-convolutionless (TCL) master equation can be used to approximate the

temporal dynamics of the system and derive an effective master equation that models the

incoherent exciton-cavity feeding [149, 153, 155–158].

∂ρ(t)

∂t
=

1

ih̄
[H ′S, ρ(t)] + L(ρ)− 1

h̄2

∫ ∞
0

dτ
∑
m=g,u

{Gm(τ)[X̂m, e
−iH′Sτ/h̄X̂me

iH′Sτ/h̄ρ(t)] +H.c.}

(4.10)

Gm(t) are the polaron Green functions (m = g, u)

Gg(t) = 〈C〉2cosh[φ(t)]− 1

Gu(t) = 〈C〉2 sinh[φ(t)]

and φ(τ) =
∫∞

0
dω J(ω)

ω2

[
coth

(
h̄ω

2kBT

)
cos(ωτ)− i sin(ωτ)

]
is the phonon correlation function.

The average phonon displacement can be calculated as 〈C〉 = exp(−φ(0)/2) [158].

To approximate the integral in the master equation the cavity-exciton detuning (∆CX)

is assumed to be large compared to g and weak excitation such that 〈b†b〉 << 1. In the

interaction picture this reduces to

e−iH
′
Sτ/h̄X̂me

iH′Sτ/h̄ ' e−iH
′
0τ/h̄X̂me

iH′0τ/h̄ (4.11)

with H ′0 = h̄∆CLa
†a + h̄(∆XL − ∆P )b†b where ∆XL − ∆P → ∆XL is renormalized. The

component transformations become

e−iH
′
0τ/h̄beiH

′
0τ/h̄ = b†e−i∆XLτ

e−iH
′
0τ/h̄b†eiH

′
0τ/h̄ = b†ei∆XLτ

e−iH
′
0τ/h̄a†beiH

′
0τ/h̄ = a†ei∆CLτbe−i∆XLτ

= a†be−i∆CXτ

e−iH
′
0τ/h̄b†aeiH

′
0τ/h̄ = b†ei∆XLτae−i∆CLτ

= b†aei∆CXτ
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Without the coherent driving term, substitution gives

Gg(τ)[X̂g, e
−iH′Sτ/h̄X̂ge

iH′Sτ/h̄ρ(t)] +H.c.

' h̄2g2Gg(τ)(a†b+ b†a)(a†bei∆CXτ + b†ae−i∆CXτ )ρ(t)

− h̄2g2Gg(τ)(a†bei∆CXτ + b†ae−i∆CXτ )ρ(t)(a†b+ b†a)

+ h̄2g2G∗g(τ)ρ(t)(a†be−i∆CXτ + b†aei∆CXτ )(a†b+ b†a)

− h̄2g2G∗g(a
†b+ b†a)ρ(t)(a†be−i∆CXτ + b†aei∆CXτ )

= h̄2g2[Gg(τ)e−i∆CXτ b†aa†bρ(t)︸ ︷︷ ︸
1

+Gg(τ)ei∆CXτ a†bb†aρ(t)︸ ︷︷ ︸
5

]

− h̄2g2[Gg(τ)e−i∆CXτ a†bρ(t)b†a︸ ︷︷ ︸
3

+Gg(τ)ei∆CXτ b†aρ(t)a†b︸ ︷︷ ︸
7

]

+ h̄2g2[G∗g(τ)e−i∆CXτ ρ(t)a†bb†a︸ ︷︷ ︸
6

+G∗g(τ)ei∆CXτ ρ(t)b†aa†b︸ ︷︷ ︸
2

]

− h̄2g2[G∗g(τ)e−i∆CXτ b†aρ(t)a†b︸ ︷︷ ︸
8

+G∗g(τ)ei∆CXτ a†bρ(τ)b†a︸ ︷︷ ︸
4

]

= h̄2g2{<[Gg(t)e
−i∆CXτ ]b†aa†bρ(t) + i=[Gg(τ)e−i∆CXτ ]b†aa†bρ(t)︸ ︷︷ ︸

1

}

+ h̄2g2{<[Gg(τ)e−i∆CXτ ]ρ(t)b†aa†b− i=[Gg(τ)e−i∆CXτ ]ρ(t)b†aa†b︸ ︷︷ ︸
2

}

− h̄2g2{Gg(τ)e−i∆CXτa†bρ(t)b†a︸ ︷︷ ︸
3

+G∗g(τ)ei∆CXτa†bρ(t)b†a︸ ︷︷ ︸
4

}

+ h̄2g2{<[Gg(τ)ei∆CXτ ]a†bb†aρ(t) + i=[Gg(τ)ei∆CXτ ]a†bb†aρ(t)︸ ︷︷ ︸
5

}

+ h̄2g2{<[Gg(τ)ei∆CXτ ]ρ(t)a†bb†a− i=[Gg(τ)ei∆CXτ ]ρ(t)a†bb†a︸ ︷︷ ︸
6

}

− h̄2g2{Gg(τ)ei∆CXτb†aρ(t)a†b︸ ︷︷ ︸
7

+G∗g(τ)e−i∆CXτb†aρ(t)a†b︸ ︷︷ ︸
8

}



64

Gg(τ)[X̂g, e
−iH′Sτ/h̄X̂ge

iH′Sτ/h̄ρ(t)] +H.c.

' h̄2g2<[Gg(τ)e−i∆CXτ ](b†aa†bρ(t)︸ ︷︷ ︸
<[1]

+ ρ(t)b†aa†b︸ ︷︷ ︸
<[2]

− 2a†bρ(t)b†a︸ ︷︷ ︸
3+4

)

+ h̄2g2<[Gg(τ)ei∆CXτ ](a†bb†aρ(t)︸ ︷︷ ︸
<[5]

+ ρ(t)a†bb†a︸ ︷︷ ︸
<[6]

− 2b†aρ(t)a†b︸ ︷︷ ︸
7+8

)

+ ih̄2g2=[Gg(τ)e−i∆CXτ ](b†aa†bρ(t)︸ ︷︷ ︸
=[1]

− ρ(t)b†aa†b︸ ︷︷ ︸
=[2]

)

+ ih̄2g2=[Gg(τ)ei∆CXτ ](a†bb†aρ(t)︸ ︷︷ ︸
=[5]

− ρ(t)a†bb†a︸ ︷︷ ︸
=[6]

)

Eight terms are lost in the first equality by cancellation with terms from the integrand

containing Xu due to the imaginary i giving an overall minus sign to the manipulations. By

inspection of the last equality all a† are replaced by −a† for the integrand with Xu(τ) but

the overall minus sign negates this. Then m = g, u can be summed over.

g2

∫ ∞
0

dτ
∑
m=g,u

{<[Gm(τ)e−i∆CXτ ](b†aa†bρ(t) + ρ(t)b†aa†b− 2a†bρ(t)b†a)

+ <[Gm(τ)ei∆CXτ ](a†bb†aρ(t) + ρ(t)a†bb†a− 2b†aρ(t)a†b)

+ i=[Gm(τ)e−i∆CXτ ](b†aa†bρ(t)− ρ(t)b†aa†b)

+ i=[Gm(τ)ei∆CXτ ](a†bb†aρ(t)− ρ(t)a†bb†a)}

Recall
∑

m=g,uGm(τ) = 〈C〉2(eφ(τ)−1) and the dissipator is defined L[ξ] = ξρξ†− 1
2
ξ†ξρ− 1

2
ρξ†ξ

with Lindbladian operators ξ. The resulting term becomes

i[∆b†a
ph b

†aa†b+ ∆a†b
ph a

†bb†a, ρ(t)] +
Γb
†a
ph

2
L(b†a) +

Γa
†b
ph

2
L(a†b) (4.12)

The frequency shifts are given as

∆
b†a/a†b
ph = 〈C〉2g2Im

[∫ ∞
0

dτe±i∆CXτ (eφ(τ) − 1)

]
(4.13)

The scattering rates are given as

Γ
b†a/a†b
ph = 2〈C〉2g2Re

[∫ ∞
0

dτe±i∆CXτ (eφ(τ) − 1)

]
(4.14)
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Ignoring cross-terms in the integrand commutator between the coherent exciton-cavity

interaction g and coherent exciton drive ηX , a rederivation can be avoided by observing all a

and a† can be removed, replacing g → ηX , and replacing ∆CX → ∆XL. The resulting term

becomes

i[∆b†

phb
†b+ ∆b

phbb
†, ρ(t)] +

Γb
†

ph

2
L(b†) +

Γbph
2
L(b) (4.15)

The frequency shifts are given

∆
b†/b
ph = 〈C〉2η2

XIm

[∫ ∞
0

dτe±i∆XLτ (eφ(τ) − 1)

]
(4.16)

The scattering rates are given

Γ
b†/b
ph = 2〈C〉2η2

XRe

[∫ ∞
0

dτe±i∆XLτ (eφ(τ) − 1)

]
(4.17)

For the purposes of simulation and fitting to the data the AC Stark shifts ∆
b†a/a†b
ph and ∆

b†/b
ph

are ignored which do not contribute modifications to the spectrum in the linear regime.

4.3 Excitonic photoluminescence

Before considering the cavity-coupled photoluminescence, the quantum optical model is first

applied to the excitonic photoluminescence without cavity integration. Photoluminescence

(PL) is measured to confirm the presence of the monolayer after material transfer because 2D

materials exhibit poor optical contrast on the SiN substrate (Fig. 4.1d). The strong excitonic

peak of the WSe2 monolayer integrated onto the SiN ring resonator establishes the presence

of the vdW material on the waveguide [77]. The primary peak is attributed to neutral exciton

emission. The secondary sidebands are likely due to defects or trion emission [28, 87]. PL is

measured by exciting the monolayer with a HeNe laser (40 µW at 633 nm). By fitting the

measured PL at 80 K, the material dependent parameters for the phonon spectral function

can be calculated, independent of the cavity coupling. An exciton linewidth γ = 48.4 meV

is measured with an exciton-phonon coupling αp = 0.018 ps2 and cutoff frequency ωb = 6.7

meV. These extracted parameters are consistent with values estimated from bulk material

measurements discussed in the following numerical details. The polaron shift of the exciton
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Figure 4.1: Photoluminescence and transmission spectra. a) SEM of four 5 µm (radius)

uncoupled SiN ring resonators. Inset: SEM of the coupled ring/waveguide and grating couplers.

The grating couplers are used to input light and collect transmitted light. b) Transmission

spectrum of the SiN ring resonator before integration of monolayer WSe2. c) Transmission

spectrum of the SiN ring resonator after integration of monolayer WSe2. d) PL of monolayer

WSe2. e) Cavity-coupled PL of monolayer WSe2.

energy is then calculated to be h̄∆P = h̄
∫∞

0
dωJ(ω)/ω = h̄

√
π
2
αpω

3
b = 24 meV, which is

incorporated into the modified exciton resonance ∆′xL = ∆xL −∆P .

4.3.1 Numerical details

It is important to note the photonic devices are fabricated on a 220 nm thick SiN membrane

grown via LPCVD on 4 µm of thermal oxide on silicon. The underlying silicon is opaque to the

wavelengths of the excitonic transition in monolayer transition metal dichalcogenides, hence

absorption spectroscopy is not possible. Alternatively, a differential reflectance measurement

may be considered. However, the structured surface of the photonic devices does not provide
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a good (i.e. flat) substrate for high-quality measurements. This limits the experiment to using

the photoluminescence as a proxy for the neutral exciton lineshape. Independent differential

reflectivity measurements on monolayer TMDs find agreement with the photoluminescence

peaks, within a classical understanding of disordered two-dimensional semiconductors [159].

The steady-state exciton population [160] without cavity-coupling can be found for

comparison to PL measurements

N̄X =
1

2

1 +
Γσ

+

ph − Γσ
−

ph − γ
Γσ

+

ph + Γσ
−
ph + γ +

4η2
x〈B〉2Γpol

Γ2
pol+∆2

XL

 (4.18)

with Γpol = 1
2
(Γσ

+

ph + Γσ
−

ph + γ). For numerical fitting of the data to this model ηX ≡ 0.01γ.

The coefficient choice does not significantly affect the lineshape of N̄x. Fixed parameters in

this model are temperature (T ) and the exciton decay rate (γ) extracted from the linewidth

of the exciton resonance. N̄X reduces to a Lorentzian with full width at half maximum

(FWHM) equal to γ. Free parameters of the model are the exciton-phonon coupling strength

(αp) and cutoff frequency (ωb).

Photoluminescence involves above-band excitation which phenomenologically amounts

to an incoherent drive of the neutral exciton. Our presented simplified model requires a

coherent drive for phonon-mediated processes as seen by the ηX in the Γ
a†/a
ph scattering rates.

By representing the incoherent excitation as a coherent field with a random phase [161, 162]

the Markovian approximation made for the TCL master equation allows for the consideration

of a steady state population of neutral excitons by effectively integrating out the transient

dynamics.

The secondary sidebands observed in the photoluminescence spectra are assumed to be

defects or trions [28, 87] and are fit using a Gaussian and Lorentzian function, respectively. The

emission is inferred to be from defects because a fraction of the red-detuned photoluminescence

is quenched at elevated temperatures [163]. As single defect emission is known to have a

relatively narrow linewidth the inhomogeneous broadening is assumed to dominatesin the

observed linewidth of the defect emission [136, 164]. Similarly, for the trion emission a
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Lorentzian lineshape is chosen as is often done in the literature [136, 165, 166]. The remaining

photoluminescence is fit to the steady-state exciton population of equation 4.18 which amounts

to asymmetric emission on the blue-detuned side of the neutral exciton [102, 137]. The total

PL spectrum is fit using SciPy’s curve_fit function for the Gaussian and Lorentzian terms,

and a brute force grid search for αp and ωb (Fig 4.2).

SPL(∆XL) = y0 +
ADe

−4 ln 2(∆XL−∆D)2

Γ2
D

ΓD
√

π
4 ln 2

+
2AT
π

ΓT
4(∆XL −∆T )2 + Γ2

T

+ fN̄X(∆XL) (4.19)

The defect (∆D = −82.31 meV) and trion (∆T = −26.55 meV) peak detunings with respect

to the neutral exciton are consistent with previous results in the literature (∆D ≈ −101 meV,

∆T ≈ −28 meV) [87, 167].

Although there are excellent papers on the subject of phonon-mediated interactions in

monolayer materials [102, 133, 137, 168], there is no clear comparison for αp and ωb. Consider

αp for a spherically confining potential is known to be (Dc−Dv)2

4π2ρs5
[169–171]. Dc (Dv) are the

deformation potential constants for the conduction (valence) band, ρ is the bulk material

density, and s is the sound velocity. Using the bulk material parameters for WSe2 with

|Dc −Dv| = 5.4 eV [172], ρ = 9.32 g cm−3 [173], and s = 4000 m s−1 [174], the derived value

is αp = 0.019 meV, which is similar to the extracted result of αp = 0.018 meV. The phonon

cutoff energy ωb = s
d

= 6.7 meV corresponds to a d = 3 nm in-plane localization. This length

scale is not unreasonable for an estimate of the silicon nitride surface roughness. There may

also be some correlation between the localization and defect emission.

The deformational potential ansatz assumes coupling to acoustic phonons [145]. The

linear dispersion for acoustic phonons leads to the super-ohmic spectral density function. The

spectral density function is introduced in terms of a localizing length scale. Alternatively,

it can be understood as analogous to the Debye model for the phonon contribution to the

heat capacity of a solid where a low frequency power law dependence is assumed with a soft

energy cutoff [148]. At lower temperatures a more quantitative representation of the phonon

spectral function accounting for the thermal occupancy of specific phonon modes would then

be necessary [175].
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Figure 4.2: Photoluminescence spectra and fit for an excitonic transition. The

extracted fit parameters for equation 4.19 are: y0 = −0.01262, AD = 15.82, ΓD = 122.0

meV, ∆D = −82.31 meV, AT = 17.02, ΓT = 38.56 meV, ∆T = −26.55 meV, f = 0.9038,

αp = 0.018 ps2, and ωb = 6.7 meV.
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4.4 Cavity-coupled photoluminescence

The resulting effective master equation derived above is ∂ρ
∂t

= 1
ih̄

[H ′S, ρ] + κ
2
L[a] + γX

2
L[b] +

Γb
†a
ph

2
L[b†a]+

Γa
†b
ph

2
L[a†b] [147] with the effective Hamiltonian in Eq. (4.7). Figure 4.3a illustrates

the energy-level diagram of the exciton and cavity system. The dissipator L[ξ] with Lindblad

operators ξ describes the cavity decay rate (κ), exciton decay rate (γ), and the incoherent

phonon-mediated exciton-cavity scattering (Γb†aph , Γa
†b
ph ).

The phonon-mediated exciton-cavity scattering (Fig. 4.3b) with cavity-exciton detuning

∆CX = ωC − ωX is given by

Γ
a†c/c†a
ph = 2〈B〉2g2Re

[∫ ∞
0

dτe±∆CXτ (eφ(τ) − 1)

]
(4.20)

with the phonon correlation function φ(τ) =
∫∞

0
dω J(ω)

ω2

[
coth

(
h̄ω

2kBT

)
cos(ωτ)− i sin(ωτ)

]
[148, 156]. A Gaussian localization of the exciton is assumed, confined to the monolayer TMD

due to substrate inhomogeneities coupled to acoustic phonons for a qualitative super-ohmic

spectral density J(ω) = αpω
3 exp(−ω2/2ω2

b ) [145, 148] with αp and ωb serving as the exciton-

phonon coupling strength and cutoff frequency, respectively. This phonon spectral function is

identical to that used in quantum dot studies of phonon interactions [153, 169, 170].

Without phonon-mediated scattering the peak cavity intensity occurs at zero detuning

(ωC = ωX) and the cavity-coupled PL is symmetric with respect to the exciton PL emission

peak (Fig. 4.3c). The additional scattering from phonon processes of the exciton into the

cavity mode dominates when the cavity is red-detuned with respect to the exciton (Fig. 4.3d).

Physically, down-conversion of an exciton into a phonon and cavity photon is expected as an

example of a Stokes process. Including phonon-mediated scattering demonstrates the peak

cavity intensity is red-detuned with respect to the exciton PL emission peak. Furthermore,

the model predicts that at the same detuning, the relative intensity between the red-detuned

and blue-detuned cavity-coupled photoluminescence decreases for increasing temperature

(Fig. 4.3d, dashed line) [147].

To validate the quantum optical model, experiments are performed with a ring resonator
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Figure 4.3: Exciton-cavity detuning dependent phonon-mediated scattering. The-

oretical modeling with the Hamiltonian described in the text (T = 80 K, γ = 48.4 meV,

αp = 0.018 ps2, ωb = 6.7 meV, κ = 2.85 meV, g = 4 meV) a) Level diagram with phonon-

mediated scattering. b) Asymmetric phonon-mediated exciton-cavity coupling rates. The

blue line gives the phonon-mediated incoherent emission into the cavity. Note that the peak

is not centered at zero detuning. c) Detuning dependent (∆CX = ±5,±10,±15,±20 meV)

cavity emission without phonons. d) Detuning dependent cavity emission with phonons at 80

K (solid line) and 320 K (dashed line). Note that for the ∆CX = ±5 meV the dashed and

solid line are on top of each other for the blue detuned case.
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integrated with a monolayer of WSe2. A ring resonator can support multiple cavity modes

separated by the free spectral range, and thus provides an ideal platform for studying the

coupling of the photoluminescence to cavity modes with different detunings from the exciton.

The transmission spectrum of the SiN ring resonator is measured by exciting a grating

coupler with a supercontinuum laser (Fianium WhiteLase Micro) and collecting from the other

grating coupler (Fig. 4.1a, inset). An initial transmission measurement of the ring resonator

before monolayer TMD transfer yields the bare cavity linewidth of κ = 2.85 meV (Fig.

4.1b). The dips in the transmission correspond to the resonance in the ring resonators. The

separation between the modes corresponds to the free spectral range (FSR = c
2πneffR

≈ 4.8

THz) of the ring resonator, which matches the FSR expected from the ring radius (R = 5 µm)

and effective index of refraction of the SiN waveguide (neff ≈ 2). The envelope modulation

of the spectrum is due to the frequency-dependent coupling efficiency of the grating couplers

(Figs. 4.1b and 4.1c). The angular dependence of the grating coupler does not affect the

cavity-coupled PL measurement due to the large numerical aperture of the objective lens.

There exists a relative amplitude change between the envelope modulation function in the

observed transmission spectrum due to the angular dependence of the grating couplers. As

the measurement is done before and after the transfer, which requires removing the sample

from the optical setup, the angular alignment of the confocal microscope objective to the

grating coupler will be slightly different [14]. The transmission spectrum of the ring resonator

after material transfer demonstrates the monolayer does not significantly affect the cavity

modes (Fig. 4.1c). It is important to point out that with the exciton at approximately 1700

meV, the small linewidth increase seen in the transmission spectrum equally affects cavity

modes both red and blue-detuned with respect to the exciton resonance.

Cavity-coupled PL is measured by directly exciting the monolayer WSe2 from the top and

collecting the resulting emission from a grating coupler using a pinhole in the image plane of

a free-space confocal microscope. Cavity-coupled PL exhibits asymmetric emission into the

cavity modes where there is greater intensity in the cavities red-detuned with respect to the

exciton (Fig. 4.1e). The coherent exciton-cavity coupling h̄g can be extracted by considering
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the linear superposition of all cavity resonances for the ring resonator and including a

contribution from background PL that is difficult to completely remove due to the proximity

of the grating coupler and laser excitation of the monolayer WSe2. The exciton-cavity coupling

accounting for the average phonon displacement is found to be h̄g ≈ 4− 6 meV (Fig. 4.4) by

a brute force search minimizing the least squares error between the simulated and observed

data over a windowed region of the cavity-coupled PL spectrum. The far red-detuned data

attributed to defect and trion emission was accounted for by a convolution of the PL and

Lorentzian cavity modes.

In this experiment only ∼ 1/4 of the SiN ring resonator was covered with monolayer WSe2.

A full coverage of monolayer WSe2 on the SiN ring resonator gives h̄g ≈ 8− 12 meV as an

estimated coherent interaction of the exciton and cavity mode due to the g ∝
√
N scaling of

the light-matter interaction in the collective excitation basis and assuming the number of

available exciton states is proportional to the area of monolayer material on the cavity. The

extracted g value is consistent with the light-matter interaction h̄g ≈ 10− 14 meV found in

strong-coupling experiments with van der Waals materials integrated on photonic crystal

cavities with comparable cavity length [22, 26, 27].

To further confirm the theoretical model, the temperature-dependent variation in the

asymmetric coupling was measured in the range 80 K - 320 K. Using liquid nitrogen in

a continuous flow cryostat (Janis ST-500) the energy of the exciton can be tuned in the

monolayer WSe2 from 1650 meV - 1700 meV with the consequent changes in linewidth. As the

cryostat temperature is increased, cavity-coupled PL extends to farther blue-detuned cavities

with respect to the exciton energy (Fig. 4.5a) where the spectra are shifted by the exciton

center frequency. In particular, the maximum detuning with visible cavity modes increases

with increasing temperature (Fig. 4.5b). The model Hamiltonian parameters extracted from

the PL and cavity-coupled PL qualitatively reproduce the spectrum at elevated temperatures

(Fig. 4.5c) where the only modified simulation parameter is the measured temperature of the

cryostat. Reduced asymmetry in cavity-coupled PL at elevated temperatures is due to the

reduced asymmetry of the phonon-mediated exciton-cavity coupling rates with respect to the
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Figure 4.4: Theoretical fit of a polaron model to cavity-coupled photoluminescence

data. Measured cavity-coupled PL (black) and simulated cavity-coupled PL (blue) at 80 K.

Theoretical model fit to the windowed region of data with the Hamiltonian described in the

text (T = 80 K, γ = 48.4 meV, αp = 0.018 ps2, ωb = 6.7 meV, κ = 2.85 meV, g = 4 meV).

neutral exciton resonance.

4.4.1 Numerical details

The cavity-coupled PL spectrum is found from the Fourier transform of the correlation

function

S(ω) =

∫ ∞
−∞

lim
t→∞
〈c†(t+ τ)c(t)〉dτ

which is provided as a function in the QuTiP Python library [176]. Although it is tempting

to simultaneously include all cavity resonances in the system Hamiltonian, with the cavity

bosonic operator truncated at N = 10 to ensure convergence a Hilbert space dimension that

is classically intractable to simulate quickly overwhelms the computational resources. Instead,

each cavity mode of the ring resonator is assumed to be independent because the spatial

overlap of different modes is approximately equal to zero. Similarly, only cavity modes which
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Figure 4.5: Temperature dependent cavity-coupled photoluminescence data and

simulations. a) Temperature dependence (80 K to 320 K) of the asymmetric cavity-coupled

PL. b) Zoomed-in to show the temperature dependence of the asymmetric cavity-coupled PL

for cavities blue-detuned with respect to the exciton. c) Simulated temperature dependence

of cavity-coupled PL without trion and defect emission. All free parameters are held fixed

except the measured cryostat temperature (T = 80 K, 160 K, 240 K, 320 K, γ = 48.4 meV,

αp = 0.018 ps2, ωb = 6.7 meV, κ = 2.85 meV, g = 4 meV).
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have the same spatial wavefunction as the collective excitation of the excitonic resonance

[18, 31] are considered. The total spectrum STotal is then a linear superposition of all cavity

resonances with different detuning ∆CX coupled to the monolayer PL and background PL

STotal(ω) = f1SPL(ω) + f2

∑
∆CX

S∆CX
(ω)

+ f3
ADe

−4 ln 2(ω−∆D)2

Γ2
D

ΓD
√

π
4 ln 2

∑
∆CX

2ADC
π

ΓDC
4(ω −∆CX)2 + Γ2

DC

+ f4
2AT
π

ΓT
4(ω −∆T )2 + Γ2

T

∑
∆CX

2ATC
π

ΓTC
4(ω −∆CX)2 + Γ2

TC

The free parameters for fitting the model to the cavity-coupled PL data are f1−4 as the relative

intensity of the background PL, cavity-coupled neutral exciton PL, cavity-coupled defect

PL and cavity-coupled trion PL and the exciton-cavity coupling g. The relative intensity

in this experiment was found to be f1 = 0.53, f2 = 0.44, f3 = 2.18, and f4 = 1.49. A single

cavity parameter for defect and trion emission was chosen to reduce overfitting. For the

cavity-coupled defect PL ADC = 2.24 and ΓDC = 2.33 meV. For the cavity-coupled trion PL

ATC = 1.42 and ΓTC = 2.29 meV.

4.5 Discussion

The exciton-phonon interactions in cavity-integrated TMDs manifesting as a phenomenological

deformation potential has significant value in explaining asymmetric cavity emission [6, 112,

141, 142]. Reflecting on the effective system Hamiltonian (Eq. 4.7), the polaron shift

h̄∆P = 24 meV of the exciton energy is comparable to the h̄∆P = 29 meV found via the

excitonic Bloch equations [137]. Temperature dependence of the exciton-cavity coupling has

been previously observed in strong-coupling experiments with TMD excitons [23, 26, 27],

although a rigorous model explaining this behavior was not reported. The modification of the

bare value is attributed to the average phonon displacement g → 〈B〉g. A consequence of the

exciton-cavity incoherent scattering (Eq. 4.20) is an efficient means for exciton population

inversion which could potentially explain observations of lasing in cavity-integrated monolayer
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materials [5, 6, 36, 141, 147, 177]. In the interest of a low-power optical non-linearity, polaron-

polaron scattering in the effective system Hamiltonain (∆P b
†b†bb) provides an interesting

opportunity which could lead to non-classical light generation [150]. The calculated polaron

shift is two orders of magnitude larger than expected for the exciton-exciton interaction due

to a lateral confining potential [20]. The investigation of the exciton-phonon interaction in a

quantum optical model for this material system demonstrates the need to fully consider all

many-body interactions to assess the potential for future classical and quantum technologies.
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Chapter 5

OUTLOOK

The potential advantage of cavity quantum electrodynamics (cQED) [17, 64] with dielectric

microresonators for ultra-low power integrated nonlinear optics stems from the wavelength-

scale mode volumes (Vm ∼ (λ/n)3) with moderate quality factors (Q ∼ 1×106) and an inherent

scalability using fabrication technologies developed for the microelectronics industry. Compare

this to millimeter-scale superconducting cavities with quality factors in excess of Q ∼ 1010

[17, 178, 179]. The figure of merit Q/Vm for electric field enhancement is orders of magnitude

larger for dielectric microresonators. However, due to fabrication imperfections in situ tuning

of the quasinormal mode resonant frequency for monolithic dielectric microresonators is

necessary, but remains an outstanding problem. Some potential solutions exist such as

micro-electro-mechanical displacement of coupled cavities.

Another difficulty of microcavity QED is in choosing an ideal quantum emitter. Color

centers, rare-earth ions, quantum dots, and donor qubits all support optical transitions

with long-lived internal degrees of freedom, such as electron or nuclear spin sublevels. The

stochastic nature of the emitter position precludes a straightforward monolithic fabrication

process flow. And, similar to microresonators, due to inhomogeneous broadening the emitter

resonant frequency also requires in situ tuning, possibly via the quantum confined Stark effect.

The intent of the monolayer transition metal dichalcogenides (TMDs) was for a quantum

emitter that can be deterministically integrated into microresonators at the expense of a

reduced quantum anharmonicity. This thesis leaves unresolved the possibility for ultra-low

power or quantum nonlinear optics in this material system.



79

5.1 Excitonic optical nonlinearity

5.1.1 Conventional and unconventional photon statisitics

An incontrovertible manifestation of quantum nonlinear optics is a classically forbidden value

of the second-order correlation function. The second-order correlation function defined as

g(2)(τ) = lim
t→∞

〈
â†(t)

(
â†â
)

(t+ τ)â(t)
〉

[〈â†â〉 (t)]2
=

〈
â†
(
â†â
)

(τ)â
〉

〈n̂〉2
(5.1)

compares the photon arrival times to that of a Poissonian process, such as a laser, where

photon arrival times are uncorrelated. Poissonian light sources have g(2)(τ) = 1. Super-

Poissonian statistics (g(2)(τ) > 1) exhibits photon bunching and sub-Poissonian statistics

(g(2)(τ) < 1) exhibits photon antibunching. Sub-Poissonian statistics cannot be achieved

with classical electromagnetic radiation suggesting the measurement of photon statistics as a

straightforward test for the quantum nature of a light source.

The general Hamiltonian for polariton blockade in microcavity QED is

H = h̄∆CLâ
†â+ h̄∆XLb̂

†b̂+ h̄g(b̂†â+ b̂â†)

+ ih̄
√
γ1(αâ† + α∗â) +

U

2
b̂†b̂†b̂b̂. (5.2)

The first line is the coupled oscillator Hamiltonian of Eq. (3.29). The second line describes

the resonant drive of the photonic mode and a Kerr-type nonlinearity (U
2
) of the excitonic

mode due to exciton-exciton interactions. γ1 is the input coupling to the cavity and |α|2

is the incident photon flux for a coherent, classical cavity drive. There exist two regimes

of non-classical photon statistics for Hamiltonians of this type known as conventional and

unconventional, both of which can be described by the mixing of a squeezed and coherent state

[180]. Conventional polariton blockade arises when a single photon, resonant to the polariton,

excites the material system, but any subsequent photon is detuned from the polariton due to

the nonlinearity. Unconventional polariton blockade arises from the destructive interference

between two paths to the two-photon excited state [181].
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5.1.2 Exciton-exciton interaction

In establishing the exciton-photon interaction and exciton-phonon interaction the excitonic

annihilation operator was assumed to satisfy bosonic commutation relations. The exciton

Hamiltonian can be extended to include a Kerr-type optical nonlinearity [49]

Ĥx =
∑
αk

h̄ωkb̂
†
αkb̂αk +

∑
αkk′q

h̄Wkk′qb̂
†
αk+qb̂

†
αk′−qb̂αk′ b̂αk. (5.3)

The first term is the exciton kinetic energy of the bosonic exciton creation operator. The

second term is a two body exciton-exciton interaction which is the lowest-order correction to

account for the fermionic electron and hole constituents of the composite boson. Within the

exciton reaction coordinate the exciton-exciton interaction is

Ŵ0 = h̄W ′
0B̂
†
0B̂
†
0B̂0B̂0 (5.4)

where W ′
0 =

∑
αkk′qWkk′qU0αk+qU0αk′−qU

∗
0αk′U

∗
0αk (U0αk is defined in chapter 3). Note the

position space exciton creation operator is b†α(r) = S−1/2
∑

k e
−ik·rb†αk. And the position space

exciton reaction coordinate creation operator is B†0 =
∑

α

∫
d2rψα0 (r)b†α(r). The position

space exciton reaction coordinate wave function is

ψα0 (r) = − f̃c (r, z0) · pαcv√∣∣∣∑α′

∫
d2r′ f̃c (r′, z0) · pα′cv

∣∣∣2 (5.5)

For dielectric microresonators the quasinormal mode confining length scale is much larger

than the exciton Bohr radius. Then Wkk′q ' W000 is approximately constant over similar

momentum variations as U0αk. The exciton-exciton interaction strength can then be written

as

W ′
0 = SW000

∑
α

∫
d2r |ψα0 (r)|4 (5.6)
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justifying the standard assumption in confined exciton-polariton systems that there exists an

excitonic mode commensurate with the cavity mode [18]. The integral in Eq. (5.6) can be

written in terms of the QNM field profile as

W ′
0 = SW000

∫
d2r
∣∣∣̃fC (r, z0)

∣∣∣4(∫
d2r
∣∣∣̃fC (r, z0)

∣∣∣2)2 (5.7)

The bare exciton-exciton interaction is of the order W000 ' Eba
2
B/S [182]. For monolayer

MoSe2 the exciton binding energy is Eb = 0.5 eV and the exciton Bohr radius is aB = 2.6

nm [49]. For the photonic crystal defect resonator in chapter 3 the confinement-enhanced

exciton-exciton interaction is U
2

= W ′
0 ∼ 0.1 µeV (2π × 25 GHz).

Assuming optimal experimental parameters for the exciton-resonator system an a priori

estimate can be made for the second-order correlation function at zero time delay (Fig. 5.1).

The figure of merit for observing polariton blockade is U/γX [180]. For U/γX = 10−4 a

minimum g(2)(0) = 0.97 is similar to that seen in other polariton systems [30, 31] but is

difficult to discern from experimental noise. An encouraging prospect is the exciton dressed

by phonons, the exciton-polaron, discussed in chapter 4 leads to a larger effective Bohr

radius with the polaron-polaron interaction h̄∆ρ = h̄
∫∞

0
dωJ(ω)/ω = h̄

√
π
2
apω

3
b . For an

order of magnitude improvement with U/γX = 10−3 a minimum g(2)(0) = 0.73 is found

and with U/γX = 10−2 a minimum g(2)(0) = 0.05 is found. Unconventional blockade was

explored for this system in Ryou et al. [20] although the model can be improved with our

better understanding of the light-matter interaction and confinement effects on the excitonic

transition [89].

5.2 Conclusion

In this thesis I established a deterministic and clean method to incorporate micron-scale

two-dimensional semiconductors onto integrated photonic devices. I established theoretical

and experimental estimates of the light-matter interaction strength for two-dimensional
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Figure 5.1: g(2)(0) versus the driving laser frequency ωL relative to the cavity

frequency for various U/γX. Parameters: h̄(κ + γ) = 0.01 meV, γX = 100(κ + γ),

h̄g = 5.1 meV, h̄√γ1α = 0.001 meV.
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excitons in monolayer MoSe2 coupled to a nanobeam cavity. And I established limitations of

the experimental system due to cavity design and phonon-mediated loss channels.

I also established the confinement-enhanced exciton-exciton interaction and expectations

for polariton blockade. The prospects must be re-evaluated for observation with a side-coupled

cavity where the input-ouput geometry determines the optimal design [183], such as with a

bimodal cavity that allows for multiple driving lasers to engineer the photonic environment

[184, 185]. There also exists an anharmonic exciton-photon coupling

ŴEM =
∑

αk1k2k3

h̄σαk1k2k3

(
b̂†αk1

b̂αk2 b̂αk3 + H.c.
) (
â†c + âc

)
(5.8)

that leads to saturation of the excitonic oscillator strength [186, 187]. Preliminary results

with a far-detuned cavity suggest excitonic optical bistability might be a more straightforward

means to observe an optical nonlinearity in this system [188].

The biggest difficulty in observing non-classical photon statistics in this material system

is the weak anharmonicity of the excitonic Hamiltonian. Hetero-bilayer structures of two-

dimensional materials are a natural next step of my research that hope to avoid this limitation.

Hetero-bilayers support interlayer excitons with large out-of-plane dipole moments. Using

the methods outlined in chapter 3 it should be possible to ascertain if the light-matter

interaction strength is sufficient to form dipolar-polariton modes [189, 190]. The cavities

would require a transverse magnetic (TM) mode, instead of the earlier transverse electric (TE)

mode, to maximize coupling to the interlayer exciton. The advantage to the hetero-bilayer

is the dipolar-dipolar interaction which is ≈ 1 meV [191], four orders of magnitude larger

than that of the monolayer. The ancillary benefit is the out-of-plane dipole moment aligns

with the out-of-plane electric field used in electrostatic gating of the optical transition to

demonstrate the quantum confined Stark effect. This affords a larger tuning effect on the

excitonic resonance frequency useful for in situ control of the quantum device.

The material system described in this thesis, a two-dimensional optical transition coupled

to a dielectric microresonator, attempts to circumvent the obstacles of zero-dimensional
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optical transitions (e.g. color centers, quantum dots, etc.) such as their stochastic position

and wavelength. However, two-dimensional excitonic transitions come at the expense of a

large linewidth, sensitivity to the atomic smoothness of the dielectric environment, and weak

excitonic anharmonicity. Fortunately, all these limitations have straightforward engineering

solutions lending to promising prospects for integrated nonlinear optics using dipolar-polaritons

in dielectric microresonators.
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