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Abstract: By codesigning a metaoptical front end in
conjunction with an image-processing back end, we
demonstrate noise sensitivity and compactness substantially
superior to either an optics-only or a computation-only
approach, illustrated by two examples: subwavelength im-
aging and reconstruction of the full polarization coherence
matrices of multiple light sources. Our end-to-end inverse
designs couple the solution of the full Maxwell equations—
exploiting all aspects of wave physics arising in sub-
wavelength scatterers—with inverse-scattering algorithms in
a single large-scale optimization involving ≳104 degrees of
freedom. The resulting structures scatter light in away that is
radically different from either a conventional lens or a
randommicrostructure, and suppress the noise sensitivity of
the inverse-scattering computation by several orders of
magnitude. Incorporating the full wave physics is especially
crucial for detecting spectral and polarization information
that is discarded by geometric optics and scalar diffraction
theory.

Keywords: computational imaging; end-to-end photonic
inverse design; inverse scattering; meta-optics;
polarimetry.

1 Introduction

Computational imaging and computer vision plays an
increasingly important role inmodern technology, ranging
from simplest image de-noising routines to state-of-the-art
object recognition, robotic vision andmachine intelligence
algorithms with widespread demand in defense, medical
as well as emerging Internet-of-Things (IoT) industries.
Traditional computer vision is exclusively driven by inno-
vating the computational back end, and more recently, via
deep learning and AI software. Little attention has been
paid to the optical hardware at the front end beyond con-
ventional lenses and diffraction gratings, in which light
propagation is designed only by geometric optics [1–3]. The
full potential of wave physics has yet to be exploited for
imaging device design in conjunction with computational
reconstruction, especially for extracting spectral and po-
larization information that is mostly discarded by geo-
metric optics. The last decade has seen explosive advances
in understanding and manipulation of light waves and
light–matter interactions at the most profound level of
nanomaterials, abetted by the development of efficient
numerical modeling/design techniques as well as the
advent of sophisticated nanofabrication machinery. Those
capabilities have been exploited for purely optical designs,
such as metasurface lenses, that involve little or no
computational post-processing [4, 5]. In this paper, we
demonstrate the potential of 3D nanophotonics in the
development of next-generation computer-vision technol-
ogies, in which conventional optics hardware is replaced
by exquisitely designed nanophotonic structures; in
particular, wepropose to bring deeper and richer physics to
computer vision by optimally tailoring a nanophotonic
front end for a computational-imaging back end using a
fully coupled inverse-design process, offering ultracom-
pact form factors as well as unprecedented capabilities for
physical data acquisition and manipulation.

A conventional all-optical imaging system (Figure 1a)
maps each point in a “target” space onto a separate sensor
pixel, directly producing a faithful spatial image but re-
quires bulky optics, and also typically fails to capture
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detailed spectral or polarization content without additional
filters. In another extreme, a compact lens-free system
(Figure 1b) would directly detect a blurry image of the
target and attempt to solve the subsequent “inverse scat-
tering”problem (target reconstruction by, e.g., least square
fitting), which is typically very ill-conditioned and hence
sensitive to noise [6–10]. In this paper, we introduce an
end-to-end approach for inverse scattering (Figure 1c), in
which a compact metaoptical structure is generated by
large-scale inverse design of the full Maxwell equations
coupled with signal processing for target recovery, both for
conventional spatial imaging and for spectral polarimetry.
First, we show that noise-tolerant subwavelength (0.2λ)
far-field reconstruction of a collection of point sources is
possible even with an ultracompact (2λ-thick) imaging
device. Second, we demonstrate a “multidimensional”
polarimeter that can resolve the full polarization states of
multiple point sources at multiple frequencies. Specif-
ically, we design metaoptical structures that generate
well-conditioned (noise-robust) inverse-scattering prob-
lems, while exploiting a simple Tikhonov-regularization
method (Section 3) to obtain subwavelength resolution
without subwavelength focusing, or to enable multidi-
mensional information extraction from a single-shot

measurement. Accomplishing this requires that the optical
“inverse” design problem, involving large-scale optimiza-
tion over ≈104 degrees of freedom, be coupled with the
reconstruction algorithms (Section 2). That is, we perform
“end-to-end” design in which the error L(ε, p) of the
reconstructed targets is jointly minimized as a function of
both the microstructure (ε) and the reconstruction param-
eters (p). Applying this approach to a two-dimensional (2D)
example problem (Section 3), we obtain 0.22λ spatial res-
olution with a robust condition number (noise sensitivity)
of only ≈10, an improvement of 102–103 over the condition
numbers for lens-free or random (diffusing [1]) scattering
structures. Applying similar techniques to the polarimetry
problem (Section 4), we obtain a full-3D inverse-designed
probe with a robust condition number of ≈6 that can
reconstruct nine-parameter polarization-coherence matrices
of two point sources emitting at two frequencies.

Recent work in end-to-end computational imaging
achieved improved image quality using regularized least-
square image reconstruction in conjunction with scalar
diffraction theory (rather than the full Maxwell equations)
to design a phase plate (i.e., treated as locally uniform and
neglecting multiple scattering) [2]. Flat-optics metalenses
[4, 5, 11], in contrast, have utilized more complete wave

Figure 1: Comparison of three imaging modalities.
(a) In traditional all-optical imaging, a bulky optical system focuses each point of the target on a different sensor pixel to directly produce a
physical image; however, refractive or diffractive lenses are not designed for capturing thepolarization or spectral content of the target. (b) In a
compact lens-free system, the sensor directly records a blurry image while signal processing attempts to solve the resulting ill-posed (noise-
sensitive) reconstruction problem; in this way, a spatial intensity profile of the target may be accurately reconstructed under sufficiently low
noise conditions but polarization and spectral information cannot be retrieved. (c) In this work, we present an end-to-end inverse design
approach,which optimizes a nanophotonic structure alongside the signal-processing algorithm leading to an ultracompact, noise-robust “all-
in-one” system which may be used for not only imaging but also extracting polarization (small black arrows) and spectral information (color-
coded).
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optics theory ranging from locally periodic [12, 13] or
overlapping [14] domain approximations to full Maxwell
calculations [15, 16] coupled with optimization-based in-
verse design [17–19], exploiting local resonances and
multiple scattering to achieve diffraction-limited focusing
[20, 21]. Four-parameter Stokes imaging has also been
demonstrated using a metaoptics polarization sorter in
combination with a refractive lens [22]. However, these
works specified the focal point and/or the desired wave-
front a priori, even with more complex focal patterns
chosen to facilitate subsequent computational processing
[23–27], rather than performing a fully coupled end-to-end
design. There is also a vast body of work on computational
image reconstruction [28, 29], but decoupled from the lens
design (taking the optics as an immutable input rather than
as design parameters). In contrast, we couple the full
Maxwell equations with the post-processing reconstruc-
tion during the design process (Section 2), so that an
optimal wavefront is determined for each source to maxi-
mize reconstruction accuracy. Specifically, we demon-
strate imaging with subwavelength resolution and
multidimensional information extraction in ultracompact
form factors, a feat not possible using previously reported
end-to-end computational imaging. In order to perform
this optimization, we employ standard adjoint techniques
from photonic inverse design [17–19] combined with
automatic-differentiation tools [30] to obtain the sensitivity
to changes in structural parameters ε and reconstruction
parameters p.

2 End-to-end framework

Figure 2 shows a schematic of our proposed framework
which can be applied to any wave-scattering problem
including imaging, spectroscopy, polarimetry or any
combination thereof. Here, the goal is to reconstruct a
target u in a preselected region of interest by computa-
tionally analyzing the captured image v on a sensor. In
between the sensor and the target region, we place a
scattering structure, aka a photonic probe, ε(r) to be
designed, at a “working” distance du from the target and an
“image” distance dv from the sensor. The state of the target
is specified by a vector u � [u1,…, un] containing spatial,
spectral and/or polarization information, the details of
which depend on the specific problem at hand. The sensor
has m pixels with corresponding intensities (raw image)
v � [v1,…, vm] given by the forward scattering model v �
G(ϵ)u + η where G represents the solution of the Maxwell
equations and η is an additive noise vector. For simplicity,
we will consider zero-mean half-Gaussian white noise with

nonzero standard deviation (η ∼ |N (0, σ)|; note that in-
tensity noise η is non-negative) [2], although our method
can be easily adapted to other noise models (such as
Poisson/shot noise) by calibrating the camera beforehand.
We consider a planar sensor, which is the most common
configuration in imaging, but our framework can readily be
extended to arbitrary sensor topologies. The linear kernelG
is a m × n matrix whose columns are essentially point
spread functions (PSF) [1, 31] computed from the underly-
ing Maxwell equations given a structure ε(r).

The raw image v is fed into a signal-processing algo-
rithm to approximately reconstruct u [6], in our case by a

Figure 2: A schematic of the end-to-end inverse design framework.
The target region of interest is characterized by an intensity vector u
of length n, containing spatial, spectral and/or polarization infor-
mation. The photonic probe has a dielectric profile ε(r) (to be
determined via inverse design). The sensor, with m pixels, records
the raw image v. u and v are related by the forward scatteringmodel:
v � G(ϵ)u + η, where G is a m × n matrix whose columns are
extracted from the solution of the full Maxwell equations, and η is a
noise vector (e.g., sensor noise). v is then fed into a signal pro-
cessing algorithm parametrized by a vector p; the overall perfor-
mance is evaluated by a loss function L (e.g., mean square deviation
from the ground truth). The processing may involve any operations
including matrix-vector multiplications, nonlinear kernels, integro-
differential equations or artificial neural networks; in particular, we
consider the inverse scattering problem of estimating u through
regularized least-square minimization. End-to-end inverse design
seeks optimal ε and p that optimizes the entire work-flow including
both the forward model and the inverse problem; the gradients are
obtained by backpropagation and adjoint methods.
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regularized least-square fit. That is, we find û such that

û � arg minμ‖Gμ − v‖2 + R(μ). Here, R is a regularization

operator which serves to condition a typically ill-posed
inverse problem; essentially, R incorporates any prior
assumptions about u (such as smoothness or sparsity)
which ensure that the inverse problem has a stable unique
solution [6]. In particular, we choose a Tikhonov (L2) reg-

ularization R(μ) � α‖μ‖2 where α > 0 is a regularization
parameter to be determined, and û has a closed-form

solution û � (GTG + αI)−1GTv [6]. The noise sensitivity of
the reconstructed û is characterized by the condition num-
ber κ(G) of the matrix G, which is a dimensionless quan-
tity ≥1 that is roughly proportional to the ratio of the

‖û − u ‖ /‖u‖ relative error to the input noise ‖η ‖ /‖v‖ [32]
(κ(G) can be computed as the ratio of the largest to smallest
singular values of G). Many other variations are possible,
such as L1 “sparse” reconstruction [33] or artificial neural
networks [34, 35]. As we discuss in Section 5, our approach
extends easily to such techniques, even if the reconstruction
problemdoes not have a closed-form solution or it involves a
vast number of free parameters to be determined. In general,
a reconstruction algorithm is characterized by a vector p of P
parameters; in this example, p � [α] and P = 1.

The end-to-end inverse design seeks optimal choices of
ε and p, which are tightly coupled by the end-to-end work-
flow, in order to minimize the difference between the
reconstructed û against the ground truth u. Specifically, we
define a loss function L(ϵ, p), here a mean-square error

(MSE), such that L � 〈‖u − û‖2〉u, η where 〈⋯ 〉u, η denotes

averaging (expected value) overmany realizations of u and
η. The formulation can be now written as:

minϵ, p L � 〈‖u − û‖2〉u, η (1)

û � (GTG + αI)−1GTv (2)

v � G(ϵ)u + η (3)

Here, the PSF matrix G is extracted from the numerical
solution of the Maxwell equations by any method.

In this paper, we consider the frequency-domain

Maxwell equations with time-harmonic sources e−iωt [36]:

∇ × ∇ × E − ω2ϵ(r)E � iωJ. (4)

solved by a finite-difference frequency-domain (FDFD)
method [37]. For each voxel in the target region, J is chosen
as a point-source situated at the center of the voxel and the
corresponding PSF is obtained by simulating the inte-
grated electric field intensities |E|2 over the sensor plane.
The optimization over ε, p require their gradients ∂L

∂ϵ,
∂L
∂p,

which can be found by back-propagation through the

signal-processing stage [38] and adjoint sensitivity anal-
ysis [18, 19] of the Maxwell equations. We numerically
implement these gradients by coupling an open-source
automatic-differentiation packages [30] with our own
Maxwell adjoint solvers [13].

3 Imaging at subwavelength
resolutions

To demonstrate the capability of our framework, we
consider an imaging problem at subwavelength resolutions.
We consider a 2D problem ϵ(x, z) (Figure 3) with y-polarized
electricfields, so that theMaxwell equationsare reduced toa
scalar 2D Helmholtz equation. Specifically, we set du � 5λ
(compact, but in the far field) and dv � λ (where near-field
effects may be relevant) (Figure 3a) where λ is the operating
wavelength. Also, we discretize a 1D 2λ-wide target region
into n = 10 point sources on an equispaced grid. Here, we
assume incoherent illumination of the target region (as is
common for imaging) so that only intensities need to be
considered [31]. Therefore, an arbitrary target residing
within the region is described by an intensity vector u �
[u1,…, un] with a spatial resolution of Δxu � 0.222 λ (for
targets at “infinity,” such as a photographic scene, the re-
gion of interest is an angular field of view and one can
consider plane-wave sources instead of point sources). The
probe and sensor have a width of 50λ and the sensor con-
tains m = 50 pixels with a pixel size Δ xv � λ. Although we
have chosen these parameters for ease of demonstration,we
note that this scenario is realizable using selective illumi-
nation [39], slit apertures, a high-speed scanningmode, and
line sensors [40] to produce 2D or even 3D images over a
wide field of view. More importantly, this system illustrates
the essential ingredients of many important applications as
discussed in Section 5.

Although we have set m > n (a nominally “over-deter-
mined” inverse problem), it is important to note that not
any ε(r) will lead to a well-conditioned (noise-robust) PSF
matrixG. It is ill-advised to use a randomly chosen ε profile
and directly invert G because not every probe can resolve
two point sources separated by a distance of 0.22λ and
project measurably-distinct noise-tolerant PSFs onto a
coarse-resolution sensor (Δ xv ≫ Δ xu) one wavelength
away from the probe (small dv leaves little room for con-
ventional magnification). For example, we checked that a

uniform ε leads to G with a condition number κ(G) ≈ 104;
even a disordered εwith rapidly varyingfine features yields
κ(G) ≈ 1000. Both of these values represent orders of
magnitude amplification of input noise in the output
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reconstruction, indicating that radical re-design of ε is
required.

We show that our end-to-end framework can discover
novel geometries ε(r) with greatly reduced κ(G), thereby
rendering the inverse problem robust against noise. Here,
the ε degrees of freedom are a set of freeform variable
heights [41] at each pixel within a double-layer design
region made up of a low-permittivity polymer material
εpolymer ≈ 2.3 in air (see Figure 3a). We have chosen these
material settings because of rapidly maturing nanoscale
3D-printing technologies [42, 43] that would allow for
exploration of such complex 3D geometries and are
particularly suited for taking advantage of the full power of
freeform topology optimization [14, 19].

We employ stochastic gradient descent [44] for

optimizing ε and α over ≳104 iterations including random
noise η; we found that α stays close to an initial choice of
0.5 while ε evolves considerably during the course of
optimization. In practice, we found that it works just as
well to fix αwith zero noise (η = 0) as to vary α under many
realizations of η (note that α is closely related to the noise
variance σ 2 [45]). Figure 3a exhibits a double-layer
optimized design in a 3D-printable polymer-matrix (for

example, Nanoscribe IP-DIP [46, 47]); each layer has
thickness λ/2 and the minimum feature size is ≈0.04λ,
which may be challenging to fabricate at visible wave-
lengths but is feasible at longer wavelengths such as mid-
wave and far-wave infrared or even millimeter waves
[48, 49]. Figure 3b demonstrates that optimization rapidly
improves both MSE (≈10−6) and κ(G) ≈ 10. Figure 3c shows
two example ground truth targets being reconstructed
under different noise levels. A Gaussian noise η ∼N (0, σ)
is added to the image: v � Gu + η, where the standard de-
viation σ is chosen as a percentage relative to the average

PSF intensity G; for example 5% noise indicates σ � 0.05G.
The low condition number ensures that the reconstruction
errors are not amplified, remaining at ≈5% and 10%,
respectively, for different σ′s.

Like almost all computational imaging [50], this device
is designed to reconstruct targets situated at a fixed grid (as
in any camera with discrete pixels), but the accuracy de-
grades gracefully for sources deviating from this grid. As
shown in Figure 3d, even for theworst case of a light source
that lies halfway between two grid points, the recon-
structed image mostly divides the intensity between the
two closest points (the error intensity at further points

Figure 3: (a) Topology-optimized double-
layer photonic probe (ϵ ≈ 2.3) used to
resolve a target of 10 point sources (not
drawn to scale). The probe is 50λwide and λ
thick, and is made up of freeform variable-
height geometry. Note the scale bar. (b)
Mean square error (MSE, blue line) and in-
verse condition number κ−1 (red line) of the
PSF matrix G, where G is am × nmatrix with
m = 50, n = 10. κ−1 steadily increases to
around 0.08(κ ≈ 12), showing that the
reconstruction becomes robust against
noise. (c) Two example ground-truth targets
are reconstructed under two different noise
levels. A Gaussian noise η ∼N (0, σ) is
added to the image: v � Gu + η. The stan-
dard deviation σ is chosen as a percentage
relative to the average PSF intensity G; for
example 5% noise indicates σ � 0.05G.
(d) The third example represents an off-grid
point source situated halfway between two
grid nodes. The reconstruction intuitively
produces a “nearest-neighbors” approxi-
mation.
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could be reduced if an L1 “sparsifying” reconstruction al-
gorithm [50] were used instead of L2 minimization). This
degradation is known as “gridding error” in the
computational-imaging community [51]. A number of
supplementary algorithms have been proposed to further
improve the reconstruction for off-grid sources, including
atomic-norm minimization [52] and coherence-inhibition
schemes [53], which could be incorporated into end-to-end
optical design if desired. Yet another way to improve the
reconstruction scenario would be to minimize the error
over a collection of offset grids (instead of a single fixed
grid of training data).

Our results suggest that a low-index photonic
microstructure with a highly complex geometry can
faithfully reconstruct an image down to deeply sub-
wavelength resolutions (albeit over a finite array of
equispaced calibrated point sources), while maintaining
a sufficiently high signal-to-noise ratio. From a
fundamental-physics perspective, we note that even
though the probe is close to the target, the former is
clearly not in the near field of the latter (since du > λ/2),
which means evanescent fields from the target have
negligible amplitude at the probe. Instead, the sub-
wavelength resolution is made possible by the ability
of the computational probe to distinguish the subtle
differences in spatial frequency components coming from
adjacent point sources [54–56]. Therefore, our approach
is unlike negative-index metamaterial superlenses
[57, 58] or super-oscillatory lenses [59], which seek perfect
point-to-point physical image formation via amplification of
evanescent waves or subdiffraction-limit focal spots without
the aid of computational reconstruction.

4 Spatial + spectral + polarization
extraction

The ability to intimately manipulate the polarization states
of light is a hallmark of vectorial Maxwell photonics
[60, 61], which sets it apart from traditional geometric or
diffractive optics. For example, in super-resolution micro-
scopy with traditional lenses, the unresolved polarization
state of a fluorescent molecule may affect localization ac-
curacy and degrade the image recovery process, posing a
nuisance in many imaging systems [62, 63]. Here, we show
that end-to-end optimization can be used to design a
nanophotonic polarimeter that can resolve the polarization
coherence state of a fluorescent molecule, approaching
theoretical upper bounds [64]. In particular, the in-
stantaneous polarization state of a point-dipole source

(e.g., a fluorescent molecule or a solid-state quantum
emitter, such as a quantum dot or color center) is specified
by the complex-valued 3-element polarization vector J �
[Jx, Jy , Jz]. However, only the time-averaged intensities can

be detected at optical frequencies, and the detectable po-
larization state of the dipole is described by a 3 × 3 coher-
ence matrix [65] (equivalent to a matrix [66]):

D � 〈JJ†〉 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈|Jx|2〉 〈JxJ*y〉 〈JxJ*z〉

〈JyJ*x〉 〈
∣∣∣∣Jy∣∣∣∣2〉 〈JyJ*z〉

〈JzJ*x〉 〈JzJ*y〉 〈|Jz |2〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (5)

Here, 〈 ⋅ 〉 denotes a time average. These nine coherence
parameters associated are a natural generalization of the
familiar four St parameters [65] that characterize the po-
larization coherence state of a plane wave.

The electric-field response E(r) of a nanophotonic
structure ϵ(r) in the presence of an arbitrarily polarized
point dipole can be completely specified by the three
“basis” fields, u1, u2 and u3, derived from x-, y- and
z-polarized test sources at the same location as the dipole:
E(r, ϵ) � Jxu1(r, ϵ) + Jyu2(r, ϵ) + Jzu3(r, ϵ). The integrated

time-averaged electric-field intensity at the ith pixel on the
sensor is then given by:

∫
i
〈
∣∣∣∣E 2〉 � ∫

i

{|u1|2 〈
∣∣∣∣Jx 2 〉 +|u2|2 〈

∣∣∣∣Jy 2 〉 +|u3|2 〈 |Jz |2〉
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ (6)

+2R[u1 ⋅u*
2](R[〈JxJ*y 〉])−2I[u1 ⋅u*

2](I[〈JxJ*y 〉]) (7)

+2R[u1 ⋅u*
3](R[〈JxJ*z 〉])−2I[u1 ⋅u*

3](I[〈JxJ*z 〉]) (8)

+2R[u2 ⋅u*
3](R[〈JyJ*z 〉])−2I[u2 ⋅u*

3](I[〈JyJ*z 〉])} (9)

Hence, it should be possible to extract the full nine-element
coherence state from a linear inverse-scattering problem
with an appropriately PSF kernel:

G�⎛⎜⎝ … … … … … …

∫
i

|u1|2 ∫
i

|u2|2 ∫
i

|u3|2 2∫
i

R[u1 ⋅u*
2] … −2∫

i

I[u2 ⋅u*
3]

… … … … … …

⎞⎟⎠
(10)

In fact, an ultracompact single-piece nanophotonic
structure should be able to resolve not only polarization
states but also extract spatial and spectral information
simultaneously from a single measurement. As a proof of
principle, we present in Figure 4 an “all-in-one super-
probe” which can extract polarization coherence infor-
mation from up to two spatial points and up to two spectral
lines, in which case the target vector u to be reconstructed
consists of 36 entries (9 polarization × 2 spatial × 2 spec-
tral). The nanophotonic probe has an ultracompact volume
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of 10 × 10 × 4.5λ3, comprising four layers of variable-
thickness polymer (refractive index ≈ 1.5) (Figure 4a). A

sensor of 10 × 10 pixels (pixel ⋅ area  � λ2) is located one λ
away on one side of the probe; on the other side, the two
dipoles are positioned one λ away from the probe and

diagonally separated by 2
�
2

√
λ away from each other; the

dipoles may emit at λ, 1.1λ, or both. The kernel G is a
100 × 36 matrix, whose condition number has been opti-
mized to κopt ≈ 6.4 (Figure 4b). We note that, in general,
more layers lead to better optimal results. For example, we
obtained an optimal condition number of 22 when using a
single layer, 12 when using two layers, and arriving at 6.5
when using the four layers presented here. Here, it is
important to emphasize the pivotal role of optimization
which greatly improves the noise sensitivity of recon-
struction compared to any other nonoptimized structure.
For example, we found that the kernel G of free space has
κ ≈ 500 and that of a correlated random mask (with the
correlation length chosen to have similar λ − 2λ length-
scales to the optimized design) has κ ∼ 100; evenmodifying
the optimized probe by simply discretizing the gray-scale
thickness or erasing the thin morphological features may
spoil κ by a factor anywhere between 1.3 and 10 (that is, any
feature-size or binary-thickness constraints must be

incorporated during the optimization process using stan-
dard techniques [18], not imposed after the fact). We also
found that the power captured by the sensor in the pres-
ence of the optimized probe is, on average, ∼3× greater
than for free space or a random mask, indicating that the
probe also serves to focus light onto the sensor, further
enhancing the noise tolerance. Figure 4c shows the
reconstruction of two dipoles with two different polariza-
tion states and emitting at two wavelengths λ (blue) and
1.1λ (red); the dipoles are circularly polarized along
different axes; their coherence matrices are reconstructed

under different noise levels σ/G � 0.05,0.20 with recon-
struction errors of ≈5%, 10% respectively. The inverse-
design optimization took ∼3 days andwas performed using
a time-domain Maxwell solver [67] distributed over 384
processors. We expect that further acceleration can be
achieved by symmetry considerations [68], overlapping
domain decompositions [14], broadband simulations and
GPU-accelerated time-domain software.

We emphasize that although our proof-of-concept
nanophotonic probe is only 10λ × 10λ in area, it can be
used to resolve two points, two spectral lines and nine
polarization coherence values (36 in total) with a robust
condition number of 6.5. Increasing the number of points

Figure 4: (a) Topology-optimized nanophotonic “all-in-one” probe for extracting spatial, spectral and polarization information. The probe can
reconstruct the polarization coherence states of up to two point dipoles emitting at up to two spectral lines λ and 1.1λ. The dipoles must be
positioned one λ away from the probe and diagonally separated by 2

��
2

√
λ away from each other whereas the sensor is located one λ away on

the other side of the probe. The probe consists of four layers of variable thickness polymer, whose gray-scale thickness profiles are also
shown. The thickness ranges from 0 to 1.125λ (note the colorbar). (b) Mean square error (MSE, blue line) and inverse condition number κ−1 (red
line) of the PSF kernel G, where G is a m × n matrix with m = 100, n = 36. κopt is found to be ≈6.4. (c) As an example, two dipoles with two
different polarization states and emitting at two wavelengths λ (blue) and 1.1 λ (red) are reconstructed under different noise levels.
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and/or spectral lines under the same probe area surely
increase the optimal condition number. However, modern
image sensors are known for relatively low noise statistics
(≲1% noise), suggesting that many more points and/or
spectral lines can be accurately reconstructed under a
relatively high condition number ∼1000 associated with a
small device area. At the same time, a larger probe area
(widerfield of view) admits evenmore spatial/spectral data
without worsening the condition number; such a large-
area probe may be realized by a periodic array of small
probes or a domain-decomposition design of a large non-
periodic probe [14]. On the other hand, in our paper, we
have used the simplest reconstruction algorithm based on
Tikhonov regularization; we expect that more advanced
methods like compressed sensing or neural networks will
allow us to extract even more information.

5 Summary and outlook

The key conclusion of our paper is that optical meta-
structures designed in conjunction with signal process-
ing result in nonobvious light-scattering patterns that
greatly ease the computational reconstruction. These
results in devices far more compact compared to optics-
only solutions while being robust to noise compared to
computation-only designs. By solving the full (Maxwell)
wave equations during the design process, our opti-
mized structure can exploit all available wave physics
(nonparaxial scattering, near-field interactions, reso-
nances, dispersion, etc.). We illustrated this idea in the
context of examples involving subwavelength imaging
and for polarization-state reconstruction, but the same
essential ideas can be readily applied to many other
systems and computational processing techniques. In
contrast to the many previous metasurface designs that
have attempted to mimic and compete with traditional
curved lenses [5], our scattered fields look nothing like
a focal pattern and represent a functionality that
is fundamentally distinct from that of conventional op-
tics. Fullwave end-to-end optimization is particularly
powerful for problems requiring spectral and polariza-
tion information that is discarded by geometric optics,
such as polarimetry or hyperspectral imaging.

There are many other sensing/imaging problems that
could benefit from this approach. Our designs in this paper
closely resemble lab-on-a-chip microscopy. Related situa-
tions arise in ultracompact optofluidic medical sensors,
where the probe and sensor must be tightly integrated, the
sample is situated only a few wavelengths away from the
sensor, and scanning is naturally provided by sample flow

[69]. Inverse design can easily be applied to broadband
problems, and we are especially excited about using it for
computational spectroscopy [70], hyper-spectral imaging
[71, 72], and other broadband sensing applications. Our
framework can straightforwardly scale to larger 3D free-
form structures [13], accommodate complex high-
dimensional objects such as plenoptic light-fields [73],
facilitate nonlinear mechanisms such as high dynamic-
range imaging [74], and generalize to other challenging
problems in physics such as nonlinear pulse shaping [75]
and quantum coherence engineering [76, 77]. Optimization
can easily incorporate constraints arising from different
fabrication processes [18].

In this paper, our computational-reconstruction stage
consisted of Tikhonov-regularized least-squares fitting,
but end-to-end optical design can be coupled with many
other computational techniques. In under-determined
systems (many more targets than sensor pixels), a com-
mon approach is compressed sensing [50] for sparse tar-
gets, and techniques for end-to-end optimization with
compressed sensing may include differentiable unrolled
approximations [78] or epigraph formulations of basis
pursuit denoising [33]. One could also employ deep
learning (neural networks) for imaging and other cognitive
tasks (e.g. passive ranging, object recognition); from the
perspective of deep learning, theMaxwell solver is simply a
specialized “network stage” that is differentiable (via
adjoint methods) and hence composable with deep-
learning software.

Apart from numerical and experimental endeavors,
an important theoretical question is to identify the abso-
lute limits to achievable dispersion (spatial or spectral)
and condition numbers, given a desired resolution, a
design volume V, and a dielectric contrast Δϵ. Recent
approaches for shape-independent bounds to light–mat-
ter interactions [79–81] may be capable of answering
these questions.
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