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In recent years, convolutional neural networks (CNNs) have enabled ubiquitous image processing applications.
As such, CNNs require fast forward propagation runtime to process high-resolution visual streams in real time.
This is still a challenging task even with state-of-the-art graphics and tensor processing units. The bottleneck in
computational efficiency primarily occurs in the convolutional layers. Performing convolutions in the Fourier
domain is a promising way to accelerate forward propagation since it transforms convolutions into elementwise
multiplications, which are considerably faster to compute for large kernels. Furthermore, such computation could
be implemented using an optical 4 f system with orders of magnitude faster operation. However, a major challenge
in using this spectral approach, as well as in an optical implementation of CNNs, is the inclusion of a nonlinearity
between each convolutional layer, without which CNN performance drops dramatically. Here, we propose a spec-
tral CNN linear counterpart (SCLC) network architecture and its optical implementation. We propose a hybrid
platform with an optical front end to perform a large number of linear operations, followed by an electronic back
end. The key contribution is to develop a knowledge distillation (KD) approach to circumvent the need for nonlin-
ear layers between the convolutional layers and successfully train such networks. While the KD approach is known
in machine learning as an effective process for network pruning, we adapt the approach to transfer the knowledge
from a nonlinear network (teacher) to a linear counterpart (student), where we can exploit the inherent parallelism
of light. We show that the KD approach can achieve performance that easily surpasses the standard linear version of
a CNN and could approach the performance of the nonlinear network. Our simulations show that the possibility
of increasing the resolution of the input image allows our proposed 4 f optical linear network to perform more
efficiently than a nonlinear network with the same accuracy on two fundamental image processing tasks: (i) object
classification and (ii) semantic segmentation. © 2022 Optical Society of America

https://doi.org/10.1364/AO.435738

1. INTRODUCTION

Convolutional neural network (CNN) architectures are well
known for their ability to compute visual tasks [1–5]. Many of
these tasks require fast processing of real-time signals. In autono-
mous navigation, for example, a network must be capable of
identifying obstacles with different textures and lighting condi-
tions in real time. While CNNs are instrumental in providing
high accuracy for such tasks, the time that it takes for the input
to propagate through the trained network (forward propagation
time) is large and precludes real-time operation. The main
reason for such inefficiency is the computational complexity of
CNNs, which isO(HWk2), where H and W are the height and
width of an image frame and K2 = k × k is the size of the convo-
lutional kernel. The challenge of enhancing the computational
performance has driven significant development of electronic

hardware that is dedicated to computing convolutions, with
graphics processing units (GPUs) and tensor processing units
(TPUs), which deliver an order of magnitude acceleration. Even
with such dedicated hardware, however, effective computation
times are still suboptimal and become too large for many appli-
cations, especially when high-resolution inputs are processed.
For example, when applied to ResNet-18 for autonomous nav-
igation, the Jetson Nano, NVIDIA hardware development kit,
achieves at most a five frames per second (fps) rate for images of
dimensions 1000× 1000 [6].

Since convolution is the most time-consuming operation
in CNNs, a possible gain in computational efficiency can be
achieved by implementing the CNN in the Fourier domain
(spectral domain) [7,8]. The fast Fourier transform (FFT)
operation has the complexity of O(HW log(HW) for the
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images and the kernels. In the Fourier domain, the convolution
is transformed into an elementwise product with only O(HW)

operations. While promising, the approach does not boost the
forward propagation time in practice. Due to nonlinearities
that follow most of the layers in a CNN, the spectral approach
ends up including a large number of costly forward and inverse
Fourier transforms between successive layers. Optimizations
of network architectures to be compatible with spectral opera-
tions were proposed, such as FCNN and Clebsch–Gordan nets
[9,10]. These architectures, however, appear to suffer from a
reduction in classification accuracy for complex visual tasks.
For example, FCNN reaches less than half of state-of-the-art
accuracy on CIFAR-10. Another branch of research developed
in parallel is the introduction of spectral pooling layers for the
purpose of adapting the spatially applied max-pooling operation
to the spectral domain [11–13]. These networks still entail non-
linear activations that require conversions between the spatial
and spectral domains. Removing these nonlinear functions
dramatically reduces the computational complexity of spectral
CNNs, which comes at the cost of reduced performance.

Another promising approach for accelerating computation is
the development of optical neural networks (ONNs) that could
replace electronic hardware [14]. ONNs utilize the inherent
parallelism of light, which enables passive manipulation of
massive amounts of 2D data at the speed of light [15–18]. Thus,
ONNs can offer time of computation that is nearly instanta-
neous in comparison with those provided by the best electronic
hardware available. Specifically, a lens can perform a Fourier
transform with O(1) complexity [19]. In recent years, this
promise has resulted in various ONNs for MNIST classification
based on a sequence of diffractive masks in the terahertz regime
[17], vector-matrix multiplication using integrated photonics
[20,21], and hybrid optical-electronic networks leveraging
the inherent Fourier transform property of lenses exploited in
a 4 f architecture [18]. While impressive in their own right,
the demonstrated ONNs to date have been limited in terms
of the complexity of the scenes on which they operate, which
have mostly been limited to low-resolution images with simple
features like MNIST digits. When applied to more complex
scenes (e.g., CIFAR-10), these implementations exhibit low
classification accuracy.

A major contributing factor to these limitations is that these
networks lack the optical implementation of nonlinear acti-
vation and were mostly constrained to linear operations in the
optical domain [18]. Achieving an optical nonlinearity requires
large optical power, a high-quality-factor resonator, exotic mate-
rials, or a combination thereof. While some nonlinear functions
are readily available, such as the square operation imparted by a
detector, it is unclear how effective it is for achieving comparable
performance with that of the ReLU nonlinearity, which is the
most common nonlinear activation for CNNs [22,23]. If the
nonlinearity is implemented electronically, as a subsequent
layer, the electronic signal needs to be converted back to the
optical domain to enable additional optical processing. Such
repeated signal transductions significantly increase the power
consumption and latency, thus obviating the benefits of an
ONN versus a more traditional electronic implementation [18].

To compensate for the lack of nonlinearity in an ONN as
well as to find an optimal level of performance for a fully linear

spectral network, here we develop a knowledge distillation (KD)
training methodology to transfer the information from a non-
linear network (teacher) to a SCLC (student). Originally, KD
training was introduced for pruning of networks, i.e., knowl-
edge from a large teacher network is transferred to a less complex
student model [24,25]. Trained with the KD approach, the
student network typically converges faster and obtains better
performance than it would achieve without the KD training. A
common example for successful KD training is object classifi-
cation in images. In this problem, the teacher classifies images
and provides “soft labels” to the student during training along
with the actual labels. A Kullback–Leibler (KL) divergence loss
between the soft labels and the student model predictions is then
optimized to take into account the teacher’s predictions [26].
KD training is a generic approach and was applied to a variety of
problems such as semantic segmentation in which soft labels are
used for classification of each pixel [27,28].

In this paper, we adapted the KD training framework to
circumvent the need for nonlinearity by “distilling the non-
linearity” from the nonlinear, teacher CNN, to the linear
counterpart SCLC, which can be easily implemented using
free-space optics. We find that, for boosting student accuracy,
the teacher and student networks are required to be as archi-
tecturally similar as possible. The KD approach allows the
student network to achieve state-of-art performance, exceeding
that of previous training methods or networks in the spectral
domain, and is also easily amenable to optical implementation
because light propagation can be naturally described in Fourier
space. The adapted KD training enables us to design a hybrid
optical-electronic architecture for the SCLC network, where
the optics serve as a linear front end processing unit connected
to an electronic back end that typically includes the last layer
that corresponds to a specific task. We train this student network
with KD training and demonstrate the performance of such a
network on two common problems in which CNNs are leading
computational methods: object classification and object seg-
mentation. We show that the KD-trained SCLC can achieve
performance easily surpassing that of a linear network trained
with a standard training approach and nearing the performance
of the nonlinear network.

2. METHODS

A. Knowledge Distillation

Knowledge distillation is a machine learning method intro-
duced for compression of neural networks [24]. In particular, it
defines the transfer of knowledge from a large neural network
model, called the teacher, to a small model, called the student.
We show the schematic flow of KD in Fig. 1. KD assumes that
the teacher model is already trained and performs the given task
with high accuracy. Then, the student model is trained with
both the conventional approach of minimization of the loss
between the model prediction and the training data (student loss)
and, in addition, compares the outcome of the student model
with the teacher model through temperature loss (temp loss)
using the KL divergence [4]. The optimization of both losses is
performed through backpropagation, which adjusts the param-
eters of the student model using stochastic gradient descent [29]
or ADAM [30] optimization.
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Fig. 1. Illustration of KD training. Student network (green-
bottom) parameters 8 are updated according to an interpolation
of two losses: the student loss (cross-entropy loss between data and
the student model output) and temp loss (cross-entropy loss or KL
divergence) between the teacher network (blue-top) and student class
distribution with a temperature parameter T.

It was shown that student models trained with the KD
approach can achieve significantly higher accuracy than the
same model trained on the data alone without a teacher network
[26]. The advantage of KD stems from the proposal to compute
the temperature loss, which treats the prediction of the teacher
model as “soft labels” that inform the student model. In particu-
lar, conventional learning considers exclusively the labels in the
training data as “hard labels” and for tasks such as classification
computes the probabilities distribution vector phl, where each
element phl

i in the vector corresponds to the probability of the
current input belonging to the class i . The softmax function is
used to compute probabilities

phl
i = exp(zi )/

∑
j

exp(z j ), (1)

where zi are the student logits after the last fully connected layer.
Training with hard labels is a sensitive process, especially for
compact networks such as the student model. This typically
results in inefficient networks and convergence to poor local
optima. To overcome this limitation, KD proposes to add soft
labels generated by the teacher model. These labels are the
probabilities that the teacher model generates. In particular, for
each input, at the same time of computing phl with the student
model, KD computes the soft probabilities vector, p sl, with the
teacher model according to

p sl
i = exp(y i/T)/

∑
j

exp(y j/T), (2)

where y i are the logits of the teacher after the last fully con-
nected layer. Through p sl, the teacher model contributes the
probability estimates to the student model. This knowledge is
unavailable from the data alone and is helpful for the student by
providing extra information of the similarities between classes.
The similarities are important since these indicate the effective
knowledge of the teacher model and subsequently assist in
achieving a similar knowledge and performance in the student
model. The two probability distributions p sl and phl are taken
into account (as an interpolation) to compute the overall loss
used in the training of the student model.

The probabilities contributed by the teacher are defined
as soft since the softmax function has a softening parameter,
T, named as the distillation temperature. The success of KD
depends on the choice of T. In a well-trained teacher model, the
correct class has a much higher probability than other classes.
For a low value of T, the probability of the correct class will
approach 1, while probabilities of other classes will be negligible
and will not influence the training, due to p sl being similar to
phl. On the other hand, when T is too high, p sl

i will approach
a uniformly distributed vector and will lose the distinction
between the correct and incorrect classes. It is therefore impor-
tant to choose T in between these two extreme cases such that
p sl would pass the similarities detected by the teacher to the
student.

In practice, the distillation of knowledge from the teacher
to the student is particularly effective when the differences in
the overall architecture between the two networks are minimal.
In network compression, it is typically the case that the archi-
tectural blocks are kept the same, and the only change that is
implemented is the reduction of the number of neurons in each
block. This leads us to the proposition of the implementation
of KD between nonlinear and linear CNNs, where, besides
exclusion of nonlinear components, the linear network will be
kept as similar as possible to the nonlinear one.

B. Spectral CNN Linear Counterpart (SCLC)

We propose to construct a spectral CNN linear counterpart
(SCLC), the “student network,” to a spectral nonlinear CNN,
the “teacher network,” based on a free-space optical 4 f archi-
tecture. The teacher network takes the shape of a common
CNN designed for generic tasks, e.g., image classification or
object segmentation. In the case of classification, we consider
CNNs that are structured with multiple layers of repeating
operations of convolution, nonlinearity (ReLU), and max-pool
(selecting the maximum value), as demonstrated in Fig. 2. In
the case of object segmentation, we consider a CNN of a “U”
shape [31], where the input passes through similar operations of
convolution, ReLU, and max-pool, called convolution layers;
in addition, the output of each convolutional layer contracts the
input dimension to a “bottle-neck” layer, called “skip connec-
tions,” from which the representation is expanded with a set of
inverse operations, such as transposed convolution, ReLU, and
max-pool, altogether called the “transposed convolution layers.”
To measure the performance of the proposed architectures, we
concatenate them with a back end that corresponds to either a
classification task (softmax fully connected back end layer) or
a segmentation task (sequence of transposed convolution back
end layers).

To obtain a network model that is readily realizable with
optical components, the network requires a conversion to
the spectral domain, such that the input into the model is the
Fourier transform of the input image, and the operations such
as convolution and pooling are implemented in the spectral
domain [18]. Furthermore, the model should not include
nonlinearities, since computing those will require an inverse
transform and transition from optical to electronic components.
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Fig. 2. Nonlinear CNN (top) and the proposed substitute, spectral
CNN linear counterpart (SCLC) (bottom). Top: example of nonlinear
CNN with layers that include operations of convolution, nonlinear
RELU activation, and max-pool. Bottom: SCLC of the CNN shown in
top row. The convolution corresponds to the elementwise product in
the spectral domain. The RELU operation is excluded. The max-pool
layer is represented by a center-crop operation in the spectral domain.

Moreover, as explained, the nonlinear activations will be diffi-
cult to implement optically. We describe the building blocks of
such a proposed model below.

1. Convolution in theSCLC

The convolution is performed as the elementwise product
between the input images represented in the spectral domain
and the kernels padded to the same dimensions as the inputs.
The input into the convolution is a 4D tensor (S, batch size; C,
number of input channel; H, height of the image; W, width of
the image), and the 2D convolution operation with a stride of 1
is calculated as

y (i, j )= x ∗ k =
H−1∑
h=0

W−1∑
w=0

x (h, w)× k(i − h, j −w), (3)

where x is the input image, k is the kernel, and ∗ indicates
the convolution operation. We implement the convolu-
tion in SCLC in the spectral domain by using an FFT and
an elementwise product

Y =F(x ∗ k)=F(x )�F(k). (4)

The function F denotes the FFT operation, and � indicates
the elementwise product, which requires the input and the
kernels to have the same dimension H ×W . During training,
the spectral convolution kernel is updated according to

σX =∇XL|X=X0 = σY � K0,

δk =∇K L|K=F(0) = σY � X 0,

k1 = k0 + λ[F−1(δK )], (5)

where σX and σY are the errors from the previous and next
layers; X 0 and K0 are, respectively, the input and kernel in the
forward propagation; ∇K and∇X are the gradient operators
w.r.t. the kernel and input; and L is the loss function. The
updates to the elements in the kernel are computed by applying
an inverse FFT (i-FFT) and multiplying by the learning rateλ.

Once the network has been trained, the implementation with
spectral convolution components has significant benefits for
forward propagation latency for a given input. Indeed, assum-
ing an input image size of (H,W) and square kernel size of
(k, k), the complexity of one spatial convolution in the image
domain is O(HWk2). On the other hand, the spectral con-
volution composed of elementwise products is of complexity
O(HW). In the optical setup, elementwise operations can be
performed in parallel; thus, the runtime, being independent
of H and W , is further reduced to O(1). In addition, the com-
putational complexity of an FFT is O(HW log(HW)), which
brings the overall complexity for the spectral convolution to be
O(HW log(HW)) [10,32,33]. As the proposed network is in
the spectral domain, the FFT and i-FFT transforms are needed
to be applied at the beginning and at the end of the network for
images only, such that the complexity of the intermediate layers
will only apply FFT to kennels, which greatly reduces the trans-
formation times. Additionally, significant acceleration occurs
in the optical implementation, since the spectral transforms
can be achieved through phase transforming components at
the speed of light. The combination of convolution via forward
and inverse transforms in the optical domain would correspond
to instantaneous forward propagation running time of O(1),
when compared with the electronic running time for all layers of
the network.

2. Pooling in theSCLC

Pooling in the spectral domain needs to take into consideration
both mimicking the effect of the standard max-pool used in
CNNs and to be practically implementable with optical com-
ponents. In a nonlinear CNN, common pooling operations are
average-pooling or max-pooling, which select the average of the
elements or the maximum element, respectively, from the region
of the feature map covered by the pooling filter shown in Fig. 2.
The purpose of the pooling layers is to reduce the dimensions
of the feature maps and to find the representative elements to
be transferred forward from the feature map. We propose to
substitute the max-pool with a different pooling function, called
“spectral pool,” which will enable similar functionality in the
spectral domain. In particular, we propose to replace the pooling
layer with a linear, low-pass filter in the spectral domain. The
forward and backward propagation in the layer are defined as

y =F−1(CROP(F(x ), (H ′,W ′))) (6)

z=F−1(PAD(F(y/x ∗), (H,W))), (7)

where the CROP operation in forward propagating keeps the
center part of the spectral feature map and reduces the total size
from (H,W) to (H ′,W ′). The PAD operation in backward
propagation matches the dimension of gradient outputs from
(H ′,W ′) to (H,W) by padding zeros instead of cropped ele-
ments. The F and F−1 are applied if the networks are in the
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Table 1. Comparison of Forward Propagation
Computational Complexity between Nonlinear CNN,
SCLC Implemented on Electronic Hardware, SCLC
Implemented on Optical Hardware

Structure
Nonlinear

CNN
SCLC

(Computational)
OSCLC

(Optical)

Convolution
layers

O(HWk2) Spatial:
O(HW log(HW))

O(1)

Spectral:
O(HW log(HW))

Pooling layers O(HWk2) Spatial:
O(k2 log(k2))

O(1)

Spectral:O(1)

spatial domain. These operations are similar to max pooling
since the idea of max-pool is to find the representative element
in each kernel, while it goes over the feature map and effectively
selects the most descriptive features. The spectral-pool drops the
high frequencies in the Fourier domain such that it achieves a
less noisy output and captures the dominant features, similar to
the effect of the conventional max-pool operation. It was shown
that training with spectral pooling has better convergence prop-
erties compared with max-pooling [11]. Furthermore, spectral
pool is of lower computational complexity and is inherently
amenable to optical implementation withO(1) complexity (see
Table 1).

Typically, an activation function, such as ReLU, tanh, or σ is
applied to extract the features after convolution to avoid extrem-
ities in neural units’ values and to maintain network stability.
These nonlinearities, however, are nearly impossible to achieve
in a practical optical implementation. Thus, the SCLC skips the
nonlinear activation function to make the network structure
amenable to optical implementation. The lack of nonlinearity
will be circumvented by the application of KD to maximize the
performance achieved using linear operations only.

C. Knowledge Distillation in the SCLC

KD training requires a teacher and student model both perform-
ing the same task and exhibiting similarity in their architectures.
In previous applications, KD training was applied to model
pruning, where the teacher and student models have exactly the
same structure with the student having a fraction of the units of
the teacher. Here, we extend KD application and consider the
teacher and the student models with a similar number of units;
however, the student is an adapted version of the operations
without the nonlinear activation and has a revised pooling oper-
ator. In particular, the teacher model is a pre-trained nonlinear
CNN, which is a state-of-the-art system for that particular
task. The student network is the SCLC that corresponds to that
system with the architectural changes described in the previous
sections. The objective of KD training is to optimize the total
loss subject to updating the weights, 8, of the SCLC student
model only. The total loss is a linear combination of the temper-
ature loss and student loss. The weights are updated according
to implementation of backpropagation that optimizes the total
loss.

We select the temperature loss to be the KL function between
the soft labels (p sl,t ) from the pre-trained nonlinear CNN

model (teacher) and predictions (p sl,s ) from the SCLC (student),
both distilled with the same temperature T. We chose KL loss
over cross-entropy because it includes an extra penalty on the
direction of the loss, which facilitates convergence. The student
loss is the standard cross-entropy loss between the data labels
and SCLC probabilities (phl). The total loss is then calculated as
a weighted summation of the two losses:

Loss(x , 8)= αLC (y , phl)+ (1− α)LK

× ((p sl,t
; T = τ), (p sl,s

; T = τ)), (8)

where x corresponds to the input, y is the training data, 8 are
student model weights, LC is the cross-entropy loss function,
LK is the KL divergence loss function, phl corresponds to the
student model hard predictions, p s l ,s corresponds to the stu-
dent predictions under given teacher model probabilities p sl,t ,
andα is the weighting parameter.

D. Optical Implementation of the SCLC (OSCLC)

In this section, we explore how the proposed SCLC network can
potentially be implemented using free-space optics, i.e., optical
SCLC (OSCLC). The choice of free-space optics is motivated
by the large number of information channels available to us in
such an implementation [23]. There are three components of
the OSCLC that need to be considered for optical implementa-
tion: convolutional layers, spectral pooling, and summation of
different channels.

Each convolutional layer can be implemented by a 4 f corre-
lator architecture to further accelerate the forward propagation
speed (Fig. 3) [15,34–36]. A typical 4 f correlator architec-
ture comprises two lenses of equal focal length spaced apart at
2 f distance and with input and output planes located in the
front and the back focal planes of the first and second lenses,
respectively. The first lens produces a Fourier transform of the
input scene at the focal plane. A complex-values phase-mask
placed in that focal plane provides the pointwise multiplication
implementing the convolution, and the second lens performs
the inverse Fourier transform. Therefore, a 4 f correlator
architecture is able to function as an equivalent architecture
for a single channel of a linear spectral CNN counterpart. We
note that, by using coherent light and phase-only spatial light
modulators, we can handle the negative weights. By creating a
lenslet array and an array of convolutional phase-masks, we can
parallelize all the convolutional operations. Thus, the compu-
tational complexity decreases to O(1) for any operations in the
spectral domain and will not grow exponentially with the input
image resolution/pixels. Based on our simulation, with 1 mm
center-to-distance between 3 mm focal length lenses in an array,
we have negligible cross-talk between the channels [18]. The
spectral pooling in the OSCLC can also be implemented by a
low-pass filter, where we block high-frequency components in
the Fourier plane. Essentially, we can use a 4 f correlator, with
an amplitude mask in the Fourier plane. The highest-frequency
components in the image correspond to the largest wavevectors,
which, in the Fourier plane, are distributed farther from the
optical axis. By placing a circular aperture in the Fourier plane,
we will block frequency components that reside outside of the
central aperture, thus enabling us to perform spectral pooling
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Fig. 3. Using a lenslet array and array of phase and amplitude masks,
we can implement all the convolutions in a parallel fashion. We can also
implement spectral pooling in such a structure by placing an amplitude
mask in the Fourier plane. The lenslet array and convolutional masks
can be implemented using meta-optics.

optically. This approach is also amenable to variants of our
defined low-pass spectral pooling operator. For example, we
could implement a high-pass filter by inverting the trasmit-
tance of the Fourier plane mask to be opaque at the center and
transparent outside this region. Alternatively, if frequency com-
ponents from the whole range at the Fourier plane are desired,
we could instead use a mask based on concentric transparent
annuli, which corresponds to a spectral pooling operator that
passes frequency components only at certain frequency inter-
vals. An additional consideration that must be made with this
architecture is the field of view of the lenses in the lenslet array.
In order to limit crosstalk between the different convolution
channels, the field of view will be constrained so that the con-
volutions at the output plane will be nonoverlapping; this is
achievable using an array of field stops positioned at the input
plane.

The summation of different channels is also a basic principle
in deep neural networks and is widely used in object classi-
fication and segmentation. If there are no summations after
elementwise products, the channels will grow exponentially,
requiring a massive number of kernels after only a few con-
volutional layers, which makes it impossible for real optical
implementations. Although fewer kernels in the convolution
layers can alleviate this challenge, the overall accuracy, especially
in complex scenarios, would suffer. Such a summation can be
implemented using various techniques used for coherent beam
combining [37,38]. We note that, while free-space optics tends
to be bulky and prone to misalignment, recent demonstrations
of meta-optics and volume optics [39,40] exhibit complicated
free-space optics in a compact form factor, possibly in a mono-
lithic fashion mitigating any misalignment. We note that, in
the current paper, for simulation as assumed perfect alignment
and aberration-free optics, which are ideal conditions, and
future works will explore analysis of the proposed architecture
with realistic optics and their robustness against experimental
imperfections.

3. COMPUTATIONAL EXPERIMENTS

We evaluate our proposed SCLC on two distinct tasks involving
image inputs: (i) object classification and (ii) object segmenta-
tion. The object classification task associates each image with a

class that corresponds to the object photographed in the image.
For example, the task could be to classify whether the image
depicts a cat, dog, or car. Object segmentation is a pixel-level
classification task, which aims to determine for each pixel in a
given image to which class it belongs. Effectively, object segmen-
tation partitions the input image into regions that correspond
to classes. For example, in the case of a photograph of a person,
regions would correspond to the background, face, hair, etc.
Our evaluation consists of determining the accuracy and the
forward propagation runtime of the SCLC and OSCLC and
compare them with that of a standard CNN.

In our experiment, we select AlexNet as the standard CNN
and the teacher with with input dimensions of 3× 224× 224
[where the first dimension corresponds to R,G,B channels and
the other two are height (H) and width (W) of the image]. The
linear counterpart of AlexNet (SCLC) front end is when nonlin-
earities are removed resulting in five convolutional layers, each
followed by a spectral pooling layer, which is then connected to a
fully connected back end of 256× 6× 6 dimensions. The input
into the SCLC front end is the Fourier transform of the input
image and corresponds to the same dimension 3× 224× 224
spectral representation of the input image. Each convolutional
layer in the spectral domain corresponds to an elementwise ten-
sor product between the input (previous layer output) and the
Fourier transform of the kernel padded to the same size of the
input. Following AlexNet choice of kernels, the tensors in each
layer are 32× 224× 224, 64× 113× 113, 128× 54× 54,
256× 27× 27, and 256× 13× 13, respectively (see Table 2
for the summary). The input to the back end is a vector that
corresponds to a flattened output tensor of the front end of
dimensions 256× 6× 6, i.e., a vector of 9216.

In image segmentation experiments, we adopt the linear
counterpart of a simplified U-Net with input size of 960× 640
or smaller. This U-Net has three components: 1) convolution
layers; 2) transposed convolution layers; and 3) skip connec-
tions. The SCLC implements only the convolution layers
[component (1)]. The other two components are intended
to be implemented with a standard electronic back end. The
implementation of the convolution layers is similar to image
classification problems. The convolutional layers contain four
double SCLC layers (where each double layer results in two
sequential SCLC layers) and four spectral pooling layers.

We test the performance metrics on a variety of common
benchmarks for each task. For object classification, we perform
computational experiments on (i) Kaggle’s cats and dogs chal-
lenge [41], (ii) Cifar-10 [42], and (iii) HIGH-10 (a subset of
ImageNet) [43]. For object segmentation, we perform com-
putational experiments on (i) Kaggle’s carvana image masking
challenge (cars segmentation) [44], (ii) face recognition [45]
and (iii) VOC2012 [46]. Training of all networks is performed
on a Tesla P100 GPU with the Google Colab platform. For all
networks, the initial learning rate for student networks is 0.0001
with momentum 0.9 and weight decay 0.0005. We set the batch
size according to the available memory: 16 for the classification
task and 1 for the segmentation task. We use the cross-entropy
loss to calculate the student loss, and KL divergence to calculate
the temp loss.
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Table 2. Architecture of the Network Backbone

AlexNet SCLC

Layer Input Kernel Output Layer Input Elementwise Tensor

Convolution1 3× 224× 224 3× 64× 11× 11 64× 55× 55 SCLC1 3× 224× 224 3× 32× 224× 224
Pooling1 64× 55× 55 [3,3,64] 64× 27× 27 Pooling1 32× 224× 224 32× 113× 113
Convolution2 64× 27× 27 64× 192× 5× 5 192× 27× 27 SCLC2 32× 113× 113 32× 64× 113× 113
Pooling2 192× 27× 27 [3,3,192] 192× 13× 13 Pooling2 64× 113× 113 64× 55× 55
Convolution3 192× 13× 13 192× 384× 5× 5 384× 13× 13 SCLC3 64× 55× 55 64× 128× 55× 55
Pooling3 384× 13× 13 [3,3,384] 384× 13× 13 Pooling3 128× 55× 55 128× 27× 27
Convolution4 384× 13× 13 384× 256× 13× 13 256× 13× 13 SCLC4 128× 27× 27 128× 256× 27× 27
Pooling4 256× 13× 13 [3,3,256] 256× 13× 13 Pooling4 256× 27× 27 256× 13× 13
Convolution5 256× 13× 13 256× 256× 3× 3 256× 13× 13 SCLC5 256× 13× 13 256× 256× 13× 13
Pooling5 256× 13× 13 [3,3,256] 256× 6× 6 Pooling5 256× 13× 13 256× 6× 6

Back End

Layer Input Output

FC1 9216 1024
FC2 1024 256
FC3 256 10

Fig. 4. Comparison of forward propagation time between AlexNet
(blue line) and its SCLC (red line). Left: Propagation time through
a single convolutional layer for variable image dimensions. Right:
Propagation time through a single pooling layer for variable image
dimensions. The dashed lines mark the resolution of an HD image and
its corresponding runtime in AlexNet and SCLC.

A. Spectral Counterpart Layer Efficiency

We first investigate the runtime of forward propagation when
variable input dimensions (32× 32 to 1024× 1024) are con-
sidered for AlexNet (nonlinear CNN) versus SCLC, and show
our results in Fig. 4. We evaluate forward propagation time for
convolutional layers and pooling layers separately. Forward
propagation time of convolutional layers in AlexNet grows
exponentially with input size. The runtime of the SCLC grows
exponentially as well but with a significantly slower rate. For
example, for high-definition (HD) input size image, the run-
time of the SCLC convolution corresponds to 100 ms versus
500 ms for AlexNet convolution. For pooling layers, AlexNet
forward propagation runtime grows exponentially with input
size with a smaller rate than the convolution. For the SCLC,
due to the pooling being spectral, the runtime is constant and
independent.

B. Object Classification Task

We evaluate our proposed SCLC on different classification
datasets to estimate the accuracy that SCLC can achieve when
trained with KD. We compare the accuracy with accuracy of the
teacher network, AlexNet. The first data set that we consider
is the Kaggle cats and dogs challenge [41], which consists of

125,000 images of dimensions 96× 96 associated with two
classes: a cat or a dog. An additional data set that we consider is
Cifar-10 [42], which consists of 60,000 images of dimension
of 32× 32, including 10 classes. The third data set that we
consider is High-10, which is a subset of ImageNet [43] and
consists of approximately 10,000 annotated images, equally
distributed 10 classes with images of resolution 500× 300.
During training of AlexNet, all images are resized or cropped
to dimensions of 224× 224 to match AlexNet’s input size. To
evaluate the performance of the SCLC in classification, we add
a single fully connected back end layer to it. The back end layer
will be implemented in electronics for the OSCLC since the last
layer will include nonlinearity. We employ the KD approach to
train the SCLC with AlexNet being the teacher network; when
the training converges, we test SCLC variants against AlexNet.

In particular, we compare the SCLC trained with and with-
out the KD approach and a variation of AlexNet with a square
nonlinearity that could be realized optically using detectors. We
show the results of the comparison for the three benchmarks
in Table 3. We observe that, for all benchmarks, KD training
significantly enhances the accuracy of the classification achieved
by the SCLC (by 12.5% on average). Indeed, KD contribution
appears to be essential in generating an SCLC network with
robust accuracy. On Kaggle cats and dogs classification, SCLC
achieves 90.60% (6% below the accuracy of AlexNet); on Cifar-
10 classification, it achieves 80.80% (5% below the accuracy
of AlexNet) and on HIGH-10 classification it achieves 81.4%
(≈ 12% below the accuracy of AlexNet). These results are
encouraging since the SCLC trained with standard training has
a much bigger gap of 16%, 20%, and 23% between its accuracy
and the accuracy of AlexNet. The KD approach appears to close
this gap by more than half for all benchmarks. Furthermore,
when the RELU nonlinearity is modified to square nonlinearity
(SQ-AlexNet), both KD and standard training do not result
with sufficiently accurate network. This is because the square
nonlinearity will magnify the model’s parameters. This observa-
tion indicates that the KD approach is effective in regimes where
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Table 3. Forward Propagation Accuracy and
Processing-Time of Different Network Variants for
Classification Tasks

a

Dataset
Model (input:
224 × 224) Accuracy

Runtime
(ms/img)

Optical
Runtime
(ms/img)

Cats versus AlexNet 96.10% 350.66 –
Dogs SCLC 79.50% 11.05 0.61

SCLC+KD 90.60%
(+11.10%)

11.05 0.61

SQ-Nonlinear 51.70% 12.04 0.61
SQ-Nonlinear
+KD

51.72% 12.04 0.61

Cifar-10 AlexNet 85.09% 350.66 –
SCLC 65.45% 11.05 0.61

SCLC+KD 80.80%
(+15.35%)

11.05 0.61

High-10 AlexNet 93.95% 350.66 –
SCLC 70.12% 11.05 0.61

SCLC+KD 81.40%
(+11.28%)

11.05 0.61

aAlexNet: nonlinear baseline network (no optical implementation), SCLC:
The linear counterpart of AlexNet.

the network architecture of the student is kept as close to the
teacher as possible.

Notably, to match AlexNet input dimensions, all experiments
were implemented with the same input image resolution of
224× 224. We therefore explore with the HIGH-10 data set
(which includes higher-resolution images) how accuracy varies
if the input resolution is increased. For each input image, its
resolution is downsampled to 224× 224 to train the teacher
(AlexNet). Then, the student (SCLC/OSCLC) is trained under
the supervision of the teacher model. We show in Fig. 5 that
increasing the resolution of the input increases the accuracy of
both the teacher and student models (with a linear rate). SCLC
trained with higher-resolution inputs can surpass the accuracy
of the teacher network trained with a lower-resolution data
set, e.g., the SCLC with input of 27

× 27 dimensions performs
similarly (≈80%) to the teacher with input of 26

× 26 dimen-
sions. While the accuracy of the two is similar, the runtime of
the SCLC is expected to be more favorable, since the teacher’s
runtime grows exponentially. It is impossible to continually
increase the input dimension for nonlinear models. Higher-
resolution inputs require higher computational power and
longer processing time, which makes it impractical for mobile
GPUs or any real-time usages. The computational efficiency
and computational power increase at much lower rates or are
even constant when increasing the input dimension. Indeed,
we show that for 80% accuracy both the SCLC and OSCLC are
at least five times faster than (≈5 ms and≈ 1 ms) than AlexNet
(≈25 ms).

We further demonstrate the efficient runtime of the SCLC
compared with AlexNet in Table 3 Columns 3 and 4 for input
size of 224× 224. While AlexNet runtime for a single image
is 350 ms, SCLC runtime drops by an order of magnitude to
11 ms for a single image. Simulated runtime of OSCLC drops
by another order of magnitude to 0.6 ms. The estimation of
OSCLC forward propagation runtime includes three parts:

Fig. 5. Accuracy and forward propagation time for classification
task on High-10 data set. Left: AlexNet and SCLC accuracy for varying
input resolution. Right: Forward propagation runtime of AlexNet,
SCLC, and OSCLC for varying input resolution.

Table 4. Ablation Studies of Pooling Components,
SCLC, Back End, and KD Training

Structure Accuracy

Max pooling 68.41%
Spectral pooling 70.12% (+1.71%)
Back end only 41.40%
SCLC (front end)+ back end 70.12% (+28.72%)
SCLC (front end)+ back end+KD 81.40% (+11.28%)

1) running time of the optical structure; 2) transduction time
between optics and electronics; and 3) running time of the elec-
tronic back end. Since light propagation is short,≈ ps, the main
contribution comes from the signal transduction (≈ 0.32 ms
for 100 kb images via USB 3.0 protocol at a rate of 2500 Mbit/s)
and the back end propagation time (≈ 0.28 ms for a single
image on a GPU (Tesla P100).

To demonstrate how different components contribute to
SCLC performance, we investigated ablations of the SCLC
architecture (Table 4). We first compared spectral pooling with
max pooling in the SCLC. We find that spectral pooling cor-
responds to faster convergence and to 1.71% higher accuracy
than max pooling. From our observation and classical image
processing studies, the information in the natural images is con-
centrated in the lower frequencies, while higher frequencies tend
to encode noise [11]. In addition, we test the contribution of the
front end (SCLC), the back end and the KD training of them.
When only the back end (linear layer and softmax function)
is considered, the accuracy is 41%. Adding the front end to it
and training the model on the same data set corresponds to an
increase of ≈ 30% such that the accuracy becomes 70.12%.
Further application of KD training of both the front end and the
back end boosts the accuracy and in convergence, such that the
accuracy is enhanced by another≈ 10% to 81.4%.

C. Object Segmentation Task

In addition to image classification, we explore the construction
of an SCLC for object segmentation as shown in Fig. 6. For such
a task, a standard CNN is of a U-shape with a sequence of convo-
lutions, transposed convolutions and skip connections. During
training, we choose the teacher network to be a U-Net [31]. KD
training corresponds to pixel-level loss for both soft predictions
and soft labels. The front end for this task is the sequence of
contracting convolutions while the back end corresponds to a
sequence of transposed convolutions.
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Fig. 6. Examples of object segmentation for the considered bench-
marks of (i) car segmentation, (ii) face recognition, and (iii) VOC2012.
Left to right: Input image from data sets, ground truth, our work
(SCLC/OSCLC).

Table 5. Accuracy and Forward Propagation Rate
(Frames per Second) for Object Segmentation Task
Tested on Three Benchmarks

Dataset Network Accuracy
Rate (Higher Is Better)

(fps)

Car Segmentation U-Net 98.02% 7.36
SCLC 97.1% 12.7

Face Recognition U-Net 95.58% 9.38
SCLC 91.39% 15.6

VOC2012 U-Net 75.51% 7.36
SCLC 62.21% 12.7

The first benchmark that we consider is the Kaggle carvana
image masking challenge, which consists of 5088 cars with an
original resolution of 1920× 1280. The data set is randomly
split into 4580 and 508 images for training and testing, respec-
tively. Our second benchmark is the face recognition data set,
which consists of 2000 images with 1700 for training and 300
for testing. Our third benchmark is VOC2012, which con-
sists of 2913 images of original resolution 500× 375, which
includes 20 classes and one background class. The images in
all data sets are downsampled to 960× 640 or smaller due to
limitations of GPU memory.

Our results are shown in Table 5. For both car and face
data sets, we observe that the SCLC performs relatively well
and obtains accuracy that falls from that of the teacher U-
Net by only a few percent. We observe that consideration of
higher-resolution inputs corresponds to enhanced accuracy in
classification experiments. For the VOC2012 data set, which
includes lower-resolution images and has more segmentation
classes, both the teacher and SCLC perform with rather low
accuracy below 80%. This example demonstrates that, in such
problems, it is crucial to consider the fully available image reso-
lution. We compare the computational efficiency of the SCLC
against the teacher in terms of frames per second rate and find
that the SCLC is approximately 2× faster than U-Net. While
such a speedup is more modest than of the image classification
task, the rate is closer to a real-time operation rate (30 fps) or
alternatively allows for consideration of larger input images that
may correspond to enhanced segmentation with the same frame
rate as that of the teacher. The main contribution to SCLC

runtime is the electronic back end that consists of transposed
convolution layers, which have a computational complexity
of O(HWk2) (compared with image classification back end,
which is a fully connected single layer).

4. DISCUSSION

The SCLC network is a multilayered model in spectral space,
where each layer consists of a matrix multiplication and spectral
pooling (prior to the back end). Theoretically, the convolution
layers and their corresponding operation in the spectral space
can be implemented as a single matrix that implements an ele-
mentwise product operation with the input. In particular, the
convolutional kernels in the spectral domain correspond to an
elementwise product between the Fourier transform of the input
and the Fourier transform of the kernel padded to the same size
of the input image. The elementwise product yields a matrix for
each layer, and the product of the sequence of matrices generates
a single matrix reflecting elementwise product with the input:

O = x � k1 � ...� ki � ...� kn, i = 1, 2, ...n, (9)

where O is the output, x is the input image, and the ki is the
padded parameter in each layer. The spectral pooling is also
reduced to a single operation, where it crops the center part of
this matrix:

OCROP =CROP(O)

=CROP(x � k1 � ...� ki � ...� kn), i = 1, 2, ...n.
(10)

Such a setup could be instrumental in implementation of
the optical network (OSCLC) for operation on given inputs
(i.e., forward inference). Notably, such a structure would not
be applicable during training. The reason stems from the fact
that each element in the outcome matrix incorporates multi-
ple parameters that originally correspond to multiple layers
and being efficiently trained using the KD approach that we
propose in this work. As our experiments indicate, for effective
approximation of the performance of the baseline AlexNet by
KD, the SCLC needs to have as similar structure as possible to
the original nonlinear network structure (i.e., same number
of layers). Therefore, an approach such as KD is not directly
applicable to train the much smaller number of elements in the
outcome single matrix.

We also studied deeper and more complex teacher networks
than AlexNet, such as VGG16 and ResNet18, to examine
whether the KD could distill “additional knowledge” from
these networks and improve the performance of the SCLC
counterpart of AlexNet. Table 6 shows the results of training
the SCLC with three different teacher networks: AlexNet,
VGG16, and ResNet18 on the High-10 data set. As can be
observed, even when the SCLC student is trained with a better
performing teacher, SCLC still has the best performance when
the teacher network is the network from which it was originated
(i.e., AlexNet). These results reaffirm the need for the student
and the teacher networks to be as architecturally similar as
possible to boost student accuracy.

While we have shown that the SCLC counterpart reaches
accuracy and potential speedup through OSCLC in forward



2182 Vol. 61, No. 9 / 20March 2022 / Applied Optics Research Article

Table 6. Accuracy of AlexNet SCLC with Different
Teacher Models

Teacher Model SCLC Accuracy

ResNet18 78.50%
VGG16 79.80%
AlexNet 81.40%

inference, these results are for networks that are not too deep,
such as AlexNet. When the number of layers increases to a
much deeper network, such performance is not guaranteed to
persist. The reason for this limitation is that it is unclear how to
perform the normalization or skip connections operations in
the optical setting. Notably, since optical setup would be mostly
applicable to real-time processing situations, operations such as
batch-normalization may not be required since the batch size
for these applications will be of size 1. However, as deep learning
literature indicates, incorporation of normalization is critical for
improving the network’s overall performance.

5. CONCLUSIONS

Over the last decade, various CNNs have been developed and
deployed as robust systems for ubiquitous visual tasks. While
such incorporation in multiple applications is remarkable,
scaling up CNNs for tasks that require high speed and energy
efficiency entail significant challenges. This is due to the fact that
the computational runtime of convolutional layers increases
exponentially with input size. Such a constraint eventually
leads to CNNs exceeding the limit of power consumption;
as such, they limit the accuracy and rate at which the system
can perform. It is often the case that these limitations prohibit
real-time deployment of CNNs. Representation of CNNs in the
spectral domain in conjunction with an optical platform that
supports parallel, elementwise product computations has the
potential to overcome the exponential increase in computation
runtime. However, since transitions from optical to electronic
systems are computationally inefficient, it is required to com-
pute the additional, typically nonlinear layers of CNNs with
the same optical platform. Unfortunately, performing such
operations with optical components is currently impractical. To
that end, we propose a spectral linear version of CNN (SCLC)
that is also optically realizable (OSCLC) with free-space optical
components and investigate whether it can serve as an effective
counterpart for CNN. While it is indeed possible to design
such a system, we show that the accuracy significantly drops
when nonlinear activations are not present. To address the gap
in accuracy between CNN and its SCLC, we propose a novel
training approach based on knowledge distillation (KD). The
approach assists in training the SCLC by involving the original
CNN in the training as the teacher in addition to the standard
optimization with the training data. We show that such training
is promising in circumventing the need for a nonlinearity and
represents a generic training procedure that could be applied
to various CNNs and their respective SCLCs. In particular, we
consider two visual tasks and six benchmarks and show that KD
training applied to training a SCLC and an OSCLC boosts its
accuracy by more than half of the gap created by exclusion of

nonlinearities. We further show that increasing input dimen-
sions has almost no impact on computational efficiency for
OSCLC; however, increasing dimensions is able to further close
the accuracy gap or even surpass the accuracy of CNN operating
with low resolution inputs.

While our focus here is on realizing an optically viable
architecture for an SCLC, it is notable that our analysis and
experiments indicate a computational benefit for an SCLC
trained with KD even for standard electronic components such
as GPU. For the SCLC, we find that keeping the back-end layer,
which is implemented electronically, as minimal as possible is
critical to fully leverage the benefits of optical parallelism and
its speed. Indeed, as we demonstrate in our simulations, in the
image classification task, in which the back end consists of a
single layer, optical forward propagation reduces the runtime
for standard input image dimensions by two orders of mag-
nitude. In the object segmentation task, the back end is more
complex. It consists of transposed convolutions; thus, while a
2× computational speedup is achieved, it is not as significant
as the speedup in the case of the classification task given its
increased complexity of effectively performing many classifi-
cation tasks throughout an image. We expect that this reduced
benefit for object segmentation can be mitigated with further
innovation in the design of meta-optics by exploiting spatially
large kernels that are computationally costly in software and
hyperspectral kernels that can extract information optically
that is never exploited in a traditional network architecture in
which colors can only be separated into RGB bins. Furthermore,
our investigation indicates that key components of CNNs,
such as convolution and pooling, can indeed be adapted to
the free-space optical domain; for such adaptation, the train-
ing process needs to be an integrated training procedure that
involves both the original CNN, its adapted counterpart, and
the electronic back end. We show that KD training presents a
plausible integrated training procedure for these purposes. We
note that such end-to-end design is already being pursued in
optics, including the emerging field of meta-optics. Adaptation
of additional components alongside further development of
KD-based training may pave the way toward optical-electronic
deployment of CNNs to provide a further leap in enhancement
of CNN performance for complex and real-time tasks.
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