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imaging
Ethan Tseng 1,4, Shane Colburn2,4, James Whitehead2, Luocheng Huang2, Seung-Hwan Baek1,

Arka Majumdar 2,3 & Felix Heide 1✉

Nano-optic imagers that modulate light at sub-wavelength scales could enable new appli-

cations in diverse domains ranging from robotics to medicine. Although metasurface optics

offer a path to such ultra-small imagers, existing methods have achieved image quality far

worse than bulky refractive alternatives, fundamentally limited by aberrations at large

apertures and low f-numbers. In this work, we close this performance gap by introducing a

neural nano-optics imager. We devise a fully differentiable learning framework that learns a

metasurface physical structure in conjunction with a neural feature-based image recon-

struction algorithm. Experimentally validating the proposed method, we achieve an order of

magnitude lower reconstruction error than existing approaches. As such, we present a high-

quality, nano-optic imager that combines the widest field-of-view for full-color metasurface

operation while simultaneously achieving the largest demonstrated aperture of 0.5 mm at an

f-number of 2.
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The miniaturization of intensity sensors in recent decades
has made today’s cameras ubiquitous across many appli-
cation domains, including medical imaging, commodity

smartphones, security, robotics, and autonomous driving. How-
ever, imagers that are an order of magnitude smaller could enable
numerous novel applications in nano-robotics, in vivo imaging,
AR/VR, and health monitoring. While sensors with submicron
pixels do exist, further miniaturization has been prohibited by the
fundamental limitations of conventional optics. Traditional
imaging systems consist of a cascade of refractive elements that
correct for aberrations, and these bulky lenses impose a lower
limit on camera footprint. A further fundamental barrier is a
difficulty of reducing focal length, as this induces greater chro-
matic aberrations.

We turn towards computationally designed metasurface optics
(meta-optics) to close this gap and enable ultra-compact cameras
that could facilitate new capabilities in endoscopy, brain imaging,
or in a distributed fashion as collaborative optical “dust” on scene
surfaces. Ultrathin meta-optics utilize subwavelength nano-
antennas to modulate incident light with greater design free-
dom and space-bandwidth product over conventional diffractive
optical elements (DOEs)1–4. Furthermore, the rich modal char-
acteristics of meta-optical scatterers can support multifunctional
capabilities beyond what traditional DOEs can do (e.g., polar-
ization, frequency, and angle multiplexing). Meta-optics can be
fabricated using widely available integrated circuits foundry
techniques, such as deep ultraviolet lithography (DUV), without
multiple etch steps, diamond turning, or grayscale lithography as
used in polymer-based DOEs or binary optics.

Because of these advantages, researchers have harnessed the
potential of meta-optics for building flat optics for imaging5–7,
polarization control8, and holography9. Existing metasurface imaging
methods, however, suffer from an order of magnitude higher
reconstruction error than achievable with refractive compound lenses
due to severe, wavelength-dependent aberrations that arise from
discontinuities in their imparted phase2,5,10–16. Dispersion-
engineering aims to mitigate this by exploiting group delay and
group delay dispersion to focus broadband light15–21, however, this
technique is fundamentally limited to aperture designs of ~10s of
microns22. As such, existing approaches have not been able to
increase the achievable aperture sizes without significantly reducing
the numerical aperture or supported wavelength range. Other
attempted solutions only suffice for discrete wavelengths or nar-
rowband illumination11–14,23.

Metasurfaces also exhibit strong geometric aberrations that
have limited their utility for wide field-of-view (FOV) imaging.
Approaches that support wide FOV typically rely on either small
input apertures that limit light collection24 or use multiple
metasurfaces11, which drastically increases fabrication complex-
ity. Moreover, these multiple metasurfaces are separated by a gap
that scales linearly with the aperture, thus obviating the size
benefit of meta-optics as the aperture increases.

Recently, researchers have leveraged computational imaging to
offload aberration correction to post-processing software10,25,26.
Although these approaches enable full-color imaging meta-
surfaces without stringent aperture limitations, they are limited to
a FOV below 20∘ and the reconstructed spatial resolution is an
order of magnitude below that of conventional refractive optics.
Furthermore, existing learned deconvolution methods27 have
been restricted to variants of standard encoder-decoder archi-
tectures, such as the U-Net28, and often fail to generalize to
experimental measurements or handle large aberrations, as found
in broadband metasurface imagers.

Researchers have proposed camera designs that utilize a single-
optic instead of compound stacks29,30, but these systems fail to
match the performance of commodity imagers due to low

diffraction efficiency. Moreover, the most successful
approaches29–31 hinder miniaturization because of their long
back focal distances of more than 10 mm. Lensless cameras32

instead reduce the size by replacing the optics with amplitude
masks, but this severely limits spatial resolution and requires long
acquisition times.

Recently, a variety of inverse design techniques have been
proposed for meta-optics. Existing end-to-end optimization fra-
meworks for meta-optics7,33,34 are unable to scale to large aper-
ture sizes due to prohibitive memory requirements and do not
optimize for the final full-color image quality, often relying
instead on intermediary metrics such as focal spot intensity.

In this work, we propose neural nano-optics, a high-quality,
polarization-insensitive nano-optic imager for full-color (400 to
700 nm), wide FOV (40∘) imaging with an f-number of 2. In
contrast to previous works that rely on hand-crafted designs and
reconstruction, we jointly optimize the metasurface and decon-
volution algorithm with an end-to-end differentiable image
formation model. The differentiability allows us to employ first-
order solvers, which have been popularized by deep learning, for
joint optimization of all parameters of the pipeline, from the
design of the meta-optic to the reconstruction algorithm. The
image formation model exploits a memory-efficient differentiable
nano-scatterer simulator, as well as a neural feature-based
reconstruction architecture. We outperform existing methods
by an order of magnitude in reconstruction error outside the
nominal wavelength range on experimental captures.

Results
Differentiable metasurface proxy model. The proposed differ-
entiable metasurface image formation model (Fig. 1e) consists of
three sequential stages that utilize differentiable tensor operations:
metasurface phase determination, PSF simulation and convolu-
tion, and sensor noise. In our model, polynomial coefficients that
determine the metasurface phase are optimizable variables,
whereas experimentally calibrated parameters characterizing the
sensor readout and the sensor-metasurface distance are fixed.

The optimizable metasurface phase function ϕ as a function of
distance r from the optical axis is given by

ϕðrÞ ¼ ∑
n

i¼0
ai

r
R

� �2i
; ð1Þ

where {a0,…an} are optimizable coefficients, R is the phase mask
radius, and n is the number of polynomial terms. We optimize
the metasurface in this phase function basis as opposed to in a
pixel-by-pixel manner to avoid local minima. The number of
terms n is user-defined and can be increased to allow for finer
control of the phase profile, in the experiments we used n= 8. We
used even powers in the polynomial to impart a spatially
symmetric PSF in order to reduce the computational burden, as
this allows us to simulate the full FOV by only simulating along
one axis. This phase, however, is only defined for a single,
nominal design wavelength, which is a fixed hyperparameter set
to 452 nm in our optimization. While this mask alone is sufficient
for modeling monochromatic light propagation, we require the
phase at all target wavelengths to design for a broadband imaging
scenario.

To this end, at each scatterer position in our metasurface, we
apply two operations in sequence. The first operation is an
inverse, phase-to-structure mapping that computes the scatterer
geometry given the desired phase at the nominal design
wavelength. With the scatterer geometry determined, we can
then apply a forward, structure-to-phase mapping to calculate the
phase at the remaining target wavelengths. Leveraging an effective
index approximation that ensures a unique geometry for each
phase shift in the 0 to 2π range, we ensure differentiability, and
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can directly optimize the phase coefficients by adjusting the
scatterer dimensions and computing the response at different
target wavelengths. See Supplementary Note 4 for details.

These phase distributions differentiably determined from the
nano-scatterers allow us to then calculate the PSF as a function of
wavelength and field angle to efficiently model full-color image
formation over the whole FOV, see Supplementary Fig. 3. Finally,
we simulate sensing and readout with experimentally calibrated
Gaussian and Poisson noise by using the reparameterization and
score-gradient techniques to enable backpropagation, see Supple-
mentary Note 4 for a code example.

While researchers have designed metasurfaces by treating them
as phase masks5,35, the key difference between our approach and
previous ones is that we formulate a proxy function that mimics
the phase response of a scatterer under the local phase
approximation, enabling us to use automatic differentiation for
inverse design.

When compared directly against alternative computational
forward simulation methods, such as finite-difference time-
domain (FDTD) simulation33, our technique is approximate but
is more than three orders of magnitudes faster and more
memory-efficient. For the same aperture as our design, FDTD
simulation would require the order of 30 terabytes for accurate
meshing alone. Our technique instead only scales quadratically
with length. This enables our entire end-to-end pipeline to
achieve a memory reduction of over 3000×, with metasurface

simulation and image reconstruction both fitting within a few
gigabytes of GPU RAM.

The simulated and experimental phase profiles are shown in
Figs. 1b and 3. Note that the phase changes rapidly enough to
induce aliasing effects in the phase function; however, since
the full profile is directly modeled in our framework these effects
are all incorporated into the simulation of the structure itself and
are accounted for during optimization.

Neural feature propagation and learned nano-optics design.
We propose a neural deconvolution method that incorporates
learned priors while generalizing to unseen test data. Specifically,
we design a neural network architecture that performs decon-
volution on a learned feature space instead of on raw image
intensity. This technique combines both the generalization of
model-based deconvolution and the effective feature learning of
neural networks, allowing us to tackle image deconvolution for
meta-optics with severe aberrations and PSFs with a large spatial
extent. This approach generalizes well to experimental captures
even when trained only in simulation.

The proposed reconstruction network architecture comprises
three stages: a multi-scale feature extractor fFE, a propagation
stage fZ→W that deconvolves these features (i.e., propagates
features Z to their deconvolved spatial positions W), and a
decoder stage fDE that combines the propagated features into a

Fig. 1 Neural nano-optics end-to-end design. Our learned, ultrathin meta-optic as shown in (a) is 500 μm in thickness and diameter, allowing for the
design of a miniature camera. The manufactured optic is shown in (b). A zoom-in is shown in (c) and nanopost dimensions are shown in (d). Our end-to-
end imaging pipeline shown in e is composed of the proposed efficient metasurface image formation model and the feature-based deconvolution algorithm.
From the optimizable phase profile, our differentiable model produces spatially varying PSFs, which are then patch-wise convolved with the input image to
form the sensor measurement. The sensor reading is then deconvolved using our algorithm to produce the final image. The illustrations above “Meta-
Optic” and “Sensor” in (e) were created by the authors using Adobe Illustrator.
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final image. Formally, our feature propagation network performs
the following operations:

Feature Propagation
#

O ¼ f DE
�
fZ!W

�
f FE ðIÞ; PSF

��
;

"
Decoder

"
Feature Extraction

ð2Þ

where I is the raw sensor measurement and O is the
output image.

Both the feature extractor and decoder are constructed as fully
convolutional neural networks. The feature extractor identifies
features at both the native resolution and multiple scales to
facilitate learning low-level and high-level features, allowing us to
encode and propagate higher-level information beyond raw
intensity. The subsequent feature propagation stage fZ→W is a
deconvolution method that propagates the features Z to their
inverse-filtered positions W via a differentiable mapping such
that W is differentiable with respect to Z. Finally, the decoder
stage then converts the propagated features back into image
space, see Supplementary Note 5 for architecture details. When
compared against existing state-of-the-art deconvolution
approaches we achieve over 4 dB Peak signal-to-noise ratio
(PSNR) improvement (more than 2.5× reduction in mean
squared error) for deconvolving challenging metasurface incurred
aberrations, see Supplementary Table 11.

Both our metasurface image formation model and our
deconvolution algorithm are incorporated into a fully differenti-
able, end-to-end imaging chain. Our metasurface imaging
pipeline allows us to apply first-order stochastic optimization
methods to learn metasurface phase parameters PMETA and
parameters PDECONV for our deconvolution network fDECONV
that will minimize our endpoint loss function L, which in our
case is a perceptual quality metric. Our image formation model is
thus defined as

O ¼ f DECONV PDECONV; f SENSOR I � fMETA PMETA

� �� �
; fMETA PMETA

� �� �

ð3Þ
where I is an RGB training image, fMETA generates the
metasurface PSF from PMETA, * is convolution, and fSENSOR
models the sensing process including sensor noise. Since our
deconvolution method is non-blind, fDECONV takes in
fMETAðPMETAÞ. We then solve the following optimization
problem

fP�
META;P�

DECONVg ¼ argmin
PMETA;PDECONV

∑
M

i¼1
LðOðiÞ; IðiÞÞ: ð4Þ

The final learned parameters P�
META are used to manufacture

the meta-optic and P�
DECONV determines the deconvolution

algorithm, see Supplementary Note 4 for further details.

Imaging demonstration. High-quality, full-color image recon-
structions using our neural nano-optic are shown in Fig. 2 and in
Supplementary Figs. 19, 20, 21, 22, 23. We perform comparisons
against a traditional hyperbolic meta-optic designed for 511 nm
and the state-of-the-art cubic meta-optic from Colburn et al.10.
Additional experimental comparisons against alternative single-
optic and meta-optic designs are shown in Supplementary
Note 11. Ground truth images are acquired using a six-element
compound optic that is 550,000× larger in volume than the meta-
optics. Our full computational reconstruction pipeline runs at
real-time rates and requires only 58 ms to process a 720 px ×
720 px RGB capture.
The traditional hyperbolic meta-optic experiences severe

chromatic aberrations at larger and shorter wavelengths. This is
observed in the heavy red blurring in Fig. 2a and the washed-out

blue color in Fig. 2c. The cubic meta-optic maintains better
consistency across color channels but suffers from artifacts owing
to its large, asymmetric PSF. In contrast, we demonstrate high-
quality images without these aberrations, which are observable in
the fine details in the fruits in Fig. 2a, the patterns on the lizard in
Fig. 2b, and the flower petals in Fig. 2c. We quantitatively validate
the proposed neural nano-optic by measuring reconstruction
error on an unseen test set of natural images, on which we obtain
10× lower mean squared error than existing approaches, see
Supplementary Table 12. In addition to natural image recon-
struction, we also measured the spatial resolution using standard
test charts, see Supplementary Note 10. Our nano-optic imager
achieves a spatial resolution of 214 lp/mm across all color
channels at 120 mm object distance. We improve spatial
resolution by an order of magnitude over the previous state-of-
the-art by Colburn et al.10 which achieved 30 lp/mm.

Characterizing nano-optics performance. Through our optimi-
zation process, our meta-optic learns to produce compact PSFs
that minimize chromatic aberrations across the entire FOV and
across all color channels. Unlike designs that exhibit a sharp focus
for a single wavelength but significant aberrations at other
wavelengths, our optimized design strikes a balance across
wavelengths to facilitate full-color imaging. Furthermore, the
learned meta-optic avoids the large PSFs used previously by
Colburn et al.10 for computational imaging.

After optimization, we fabricated our neural nano-optics
(Fig. 3), as well as several heuristic designs for a comparison.
Note that commercial large-scale production of meta-optics can
be performed using high-throughput processes based on DUV
lithography which is standard for mature industries such as
semiconductor integrated circuits, see Supplementary Note 3 for
details. The simulated and experimental PSFs are shown in Fig. 3
and are in strong agreement, validating the physical accuracy of
the proxy metasurface model. To account for manufacturing
imperfections, we perform a PSF calibration step where we
capture the PSFs using the fabricated meta-optics. We then
finetune our deconvolution network by replacing the proxy-based
metasurface simulator with the captured PSFs. The finetuned
network is deployed on experimental captures using the setup
shown in Supplementary Fig. 7. This finetuning calibration step
does not train on experimental captures, we only require the
measured PSFs. Thus, we do not require the experimental
collection of a vast image dataset.

We observe that the PSF for our optimized meta-optic exhibits
a combination of the compact shape and minimal variance across
field angles, as expected for our design. PSFs for a traditional
hyperbolic meta-optic (511 nm) instead have significant spatial
variation across field angles and severe chromatic aberrations that
cannot be compensated through deconvolution. While the cubic
design from Colburn et al.10 does exhibit spatial invariance, its
asymmetry and large spatial extent introduce severe artifacts that
reduce image quality. See Fig. 3 and Supplementary Note 8 for
comparisons of the traditional meta-optic and Colburn et al.10

against ours. We also show corresponding modulation transfer
functions (MTFs) for our design in Fig. 3. The MTF does not
change appreciably with incidence angle and also preserves a
broad range of spatial frequencies across the visible spectrum.

Discussion
In this work, we present an approach for achieving high-quality,
full-color, wide FOV imaging using neural nano-optics. Specifi-
cally, the proposed learned imaging method allows for an order of
magnitude lower reconstruction error on experimental data than
existing works. The key enablers of this result are our
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differentiable meta-optical image formation model and novel
deconvolution algorithm. Combined together as a differentiable
end-to-end model, we jointly optimize the full computational
imaging pipeline with the only target metric being the quality of
the deconvolved RGB image—sharply deviating from existing
methods that penalize focal spot size in isolation from the
reconstruction method.

We have demonstrated the viability of meta-optics for
high-quality imaging in full-color, over a wide FOV. No existing
meta-optic demonstrated to date approaches a comparable
combination of image quality, large aperture size, low f-number,
wide fractional bandwidth, wide FOV, and polarization insensi-
tivity (see Supplementary Notes 1 and 2), and the proposed
method could scale to mass production. Furthermore, we
demonstrate image quality on par with a bulky, six-element
commercial compound lens even though our design volume is
550,000× lower and utilizes a single metasurface.

We have designed neural nano-optics for a dedicated,
aberration-free imaging task, but we envision extending our work
towards flexible imaging with reconfigurable nanophotonics for
diverse tasks, ranging from an extended depth of field to

classification or object detection tasks. We believe that the pro-
posed method takes an essential step towards ultra-small cameras
that may enable novel applications in endoscopy, brain imaging,
or in a distributed fashion on object surfaces.

Methods
Optimization. We used TensorFlow 2 to design and evaluate our neural nano-
optic. See Supplementary Note 6 for details on the training procedure, hyper-
parameters, and loss functions. We used the INRIA Holiday dataset for training36.

Sample fabrication. Beginning with a double side polished fused silica wafer, we
deposit 705 nm of silicon nitride via plasma-enhanced chemical vapor deposition
to form our device layer. We then spin coat with ZEP 520A resist and sputter an
8 nm gold charge dissipation layer followed by exposure with a JEOL JBX6300FS
electron-beam lithography system at 100 kV and 8 nA. After stripping the gold, we
develop amyl acetate followed by immersion in isopropyl alcohol. To define the
etch mask, we evaporate 50 nm of aluminum and lift off via sonication in
methylene chloride, acetone, and isopropyl alcohol. We then etch the silicon nitride
layer using CHF3 and SF6 chemistry with an inductively coupled plasma etcher.
Following stripping of the aluminum etch mask, we coat and pattern AZ 1512
photoresist on the chip, followed by aluminum evaporation and lift-off in order to
define a hard aperture to block stray light.

Fig. 2 Experimental imaging results. Compared to existing state-of-the-art designs, the proposed neural nano-optic produces high-quality wide FOV
reconstructions corrected for aberrations. Example reconstructions are shown for a still life with fruits in (a), a green lizard in (b), and a blue flower in (c).
Insets are shown below each row. We compare our reconstructions to ground truth acquisitions using a high-quality, six-element compound refractive
optic, and we demonstrate accurate reconstructions even though the volume of our meta-optic is 550,000× lower than that of the compound optic.
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Experimental setup. After fabrication of the meta-optic, we account for fabrica-
tion error by performing a PSF calibration step. This is accomplished by using an
optical relay system to image a pinhole illuminated by fiber-coupled LEDs. We
then conduct imaging experiments by replacing the pinhole with an OLED
monitor. The OLED monitor is used to display images that will be captured by our
nano-optic imager. See Supplementary Note 7 for details.

Data availability
The raw capture data is available at https://doi.org/10.5281/zenodo.5637678.

Code availability
The code used to design and evaluate the neural nano-optic is available at https://doi.org/
10.5281/zenodo.5637678.

Received: 30 January 2021; Accepted: 6 October 2021;
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