Exceptional service in the national interest

High Fidelity Simulations of Large-Scale Wireless Networks

Bob Cole, Anand Ganti, Uzoma Onunkwo, Richard Schroeppel, Michael Scoggin, Brian Van Leeuwen

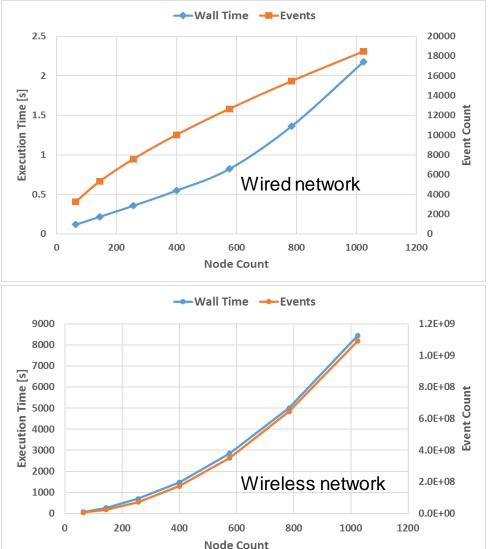
June 17, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Background
- Wireless network Discrete Event Simulation (DES)
 - Usefulness
 - Limitations
- Efficient, scalable wireless network simulations
 - Proximity-based communication
 - Dynamic load balancing
- Future work

Background

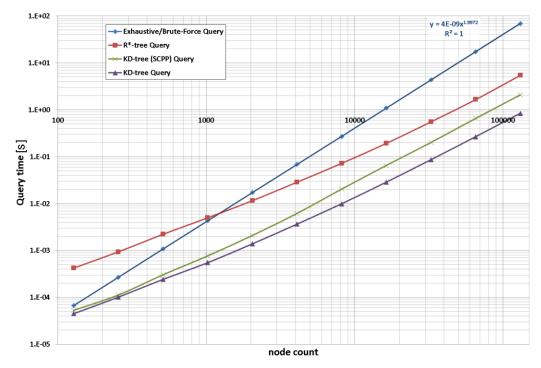


- Large-scale studies of wireless networks are becoming increasingly important with ubiquity of wireless systems.
- Wireless networks are often characterized by mobility and proximity-based communications, which are inadequately handled in today's DES simulators (ns-3, OPNET).
- High fidelity simulation of large-scale wireless networks (order of thousands of nodes) is usually prohibitively long.

Background:

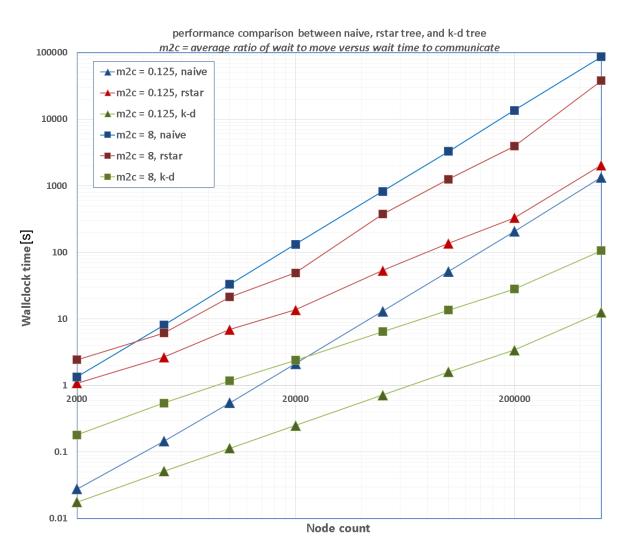
Comparing simulations of pure wired vs wireless networks

- Simulation setup
 - Nodes fixed at vertices of simple regular square grid
 - Source at NW corner of grid region, while destination is at opposite corner (SE corner)
 - Total simulated time = 1000sand constant traffic every 10s.
- Wireless network simulations requirements for events and wall clock time are more than three orders of magnitude greater than for the comparable wired network. 4


Wireless Network DES

- High-fidelity discrete-event simulators (DES)
 - ns-3
 - OPNET
 - ...
- Usefulness
 - Protocol characterization
 - Cost-effective performance evaluation
- Limitations
 - Prohibitive (time) cost for moderate size (>1000 nodes)
 - Difficult to parallelize (using parallel discrete-event simulation engine)
 - Verification and validation

Proximity-based Communication Events



- Computing platform: *Intel Xeon CPU E5-2697 @2.7 GHz.*
- Spatial indexing (R* and k-d trees) gives hundredfold speedup over the often-used naïve calculations.

R* tree implementation (libspatialindex: http://libspatialindex.github.com) SCPP = Spatial C++ Library (http://sourceforge.net/projects/spatial)

Mobility and Proximity-based Communication Events

Attained up to 800X improvement in skeletal simulation of mobility and wireless communication events.

Dynamic Load Balancing in PDES

- Goal
 - Attain equal work load distribution across all processors.
 - Adapt to dynamically changing connectivity graph.
 - Minimize physical inter-process communication among nodes.
- Considerations
 - Equal simulated node count per physical core.
 - Clustering according to geographic regions and assign to processes.
 - Monitor resource usage per simulation process and adapt to equal work load.

Future Work

- Incorporate framework for improving mobility and communication event handling into ns-3.
- Develop solutions to dynamic load balancing suitable for large-scale wireless network simulations.
- Verify and validate findings with other collaborators.

QUESTIONS