High Fidelity Simulations of Large-Scale Wireless Networks

Bob Cole, Anand Ganti, Uzoma Onunkwo, Richard Schroeppe!, Michael Scoggin, Brian Van Leeuwen

June 17, 2016
Outline

- Background
- Wireless network Discrete Event Simulation (DES)
 - Usefulness
 - Limitations
- Efficient, scalable wireless network simulations
 - Proximity-based communication
 - Dynamic load balancing
- Future work
Large-scale studies of wireless networks are becoming increasingly important with ubiquity of wireless systems.

Wireless networks are often characterized by mobility and proximity-based communications, which are inadequately handled in today’s DES simulators (ns-3, OPNET).

High fidelity simulation of large-scale wireless networks (order of thousands of nodes) is usually prohibitively long.
Background:
Comparing simulations of pure wired vs wireless networks

- **Simulation setup**
 - Nodes fixed at vertices of simple regular square grid
 - Source at NW corner of grid region, while destination is at opposite corner (SE corner)
 - Total simulated time = 1000s and constant traffic every 10s.

- **Wireless network**
 - Simulations requirements for events and wall clock time are more than three orders of magnitude greater than for the comparable wired network.
Wireless Network DES

- High-fidelity discrete-event simulators (DES)
 - ns-3
 - OPNET
 - ...

- Usefulness
 - Protocol characterization
 - Cost-effective performance evaluation

- Limitations
 - Prohibitive (time) cost for moderate size (>1000 nodes)
 - Difficult to parallelize (using parallel discrete-event simulation engine)
 - Verification and validation
Proximity-based Communication Events

- Computing platform: *Intel Xeon CPU E5-2697 @2.7 GHz.*
- Spatial indexing (R* and k-d trees) gives hundredfold speedup over the often-used naïve calculations.

R* tree implementation (libspatialindex: http://libspatialindex.github.com)
SCPP = Spatial C++ Library (http://sourceforge.net/projects/spatial)
Mobility and Proximity-based Communication Events

Attained up to 800X improvement in skeletal simulation of mobility and wireless communication events.
Dynamic Load Balancing in PDES

- **Goal**
 - Attain equal work load distribution across all processors.
 - Adapt to dynamically changing connectivity graph.
 - Minimize physical inter-process communication among nodes.

- **Considerations**
 - Equal simulated node count per physical core.
 - Clustering according to geographic regions and assign to processes.
 - Monitor resource usage per simulation process and adapt to equal work load.
Future Work

- Incorporate framework for improving mobility and communication event handling into ns-3.
- Develop solutions to dynamic load balancing suitable for large-scale wireless network simulations.
- Verify and validate findings with other collaborators.
QUESTIONS