

innovating communications

Cognitive Radio and Networks in coalition deployments through the dual use of IEEE 802.11h

Lorenza Giupponi, José Nuñez, Iñaki Pascual, Josep Mangues

Workshop on Network Performance Evaluation, Seattle, 17 of June 2016

- Introduction to the project
- Scenarios and vignettes
- Routing protocol model
- Implementation Details
- Testbed setup
- Conclusions

- Interest from the Spanish Ministry of Defense to investigate cognitive radio and networking paradigms.
- The project started in 2016.
- The project funds us during 2 years.
- The objectives of the project are aligned with NATO RTG IST140 (previous IST 077).

- In military environments
 - The different nations rely on a fixed frequency assignement.
 - The fixed frequency assignment in many cases is not efficient and not operative.
 - Coalition deployments:
 - Platoons from different nations operate in the same band often without interoperational capabilities.
 - Are characterized by a high variability of the theatre of operations
- A dynamic management of frequencies may be very useful.
- This has already been proven via simulation studies in IST077.

Requirements from the client

- Dual use of civil technology.
- If possible, rely on COTS (Commercial off-the shelf) products.
- Experimental approach
- Study of both cognitive radio and cognitive networking solutions.
- Particular interest in cognitive routing solutions and effective distributions of information.
- Not interested in more traditional routing solutions based on routing tables, due to
 - difficulty to maintain these tables in very dynamic tactical environements
 - need to avoid as much as possible exchange of control information
- Assessment of scalability

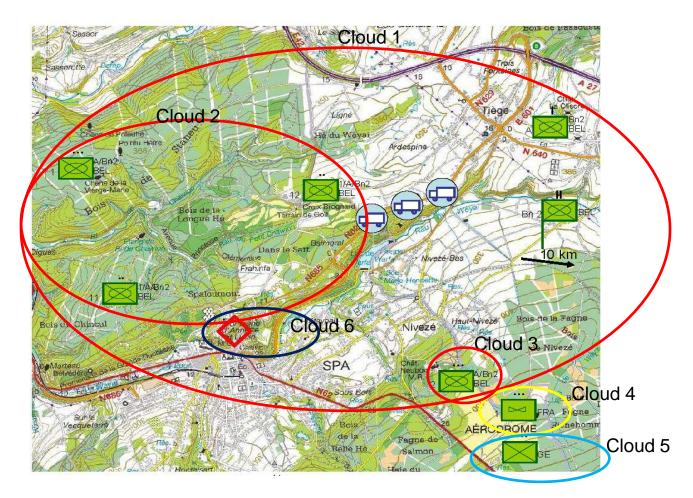
- We take advantage of COTS, like IEEE 802.11 h to coexist in 5 GHz bandwidth between WiFi and radar technology.
- IEEE 802.11h includes
 - Dynamic frequency selection
 - Transmission power control
- We build a IEEE802.11ac wireless multi-hop testbed where we exploit those functionalities at two levels of cognition:
 - cognitive radio
 - cognitive networking, load aware routing.

- ns-3 emulation capabilities are exploited for rapid prototyping
- The same code will be used in simulations and in the testbed.
- This enables cross-validation of simulated and experimental scenarios, hence offering the best of both worlds:
 - Model validation for the simulator based on experimental evaluations
 - Scalability assessment of the scheme in the simulator once models have been validated.

Technical problems we aim to solve

- *Problem 1:* Configuration of the cognitive ad-hoc network and distribution of the control information.
- *Problem 2:* Intra-platoon interference control by means of transmission power control.
- *Problema 3:* Detection of transmissions coming from other foreign platoons and consequent channel reselection (inter-platoon interference control).
- *Problema 4:* Routing algorithm for a cognitive network.
- Problema 5: Scalability.

- Introduction to the project
- Scenarios and vignettes
- The Protocol Model
- Implementation Details
- Testbed setup
- Conclusions



Simulation methodologies and vignettes in IST077

- Scenarios based on the vignettes defined in IST-077 group.
- Prevention of an aid convoy attack.
- NATO troops are involved in peacekeeping operations.
- They only can operate in case of self-defense.
- NGOs provide food and medical equipments through aid convoys.
- A group of rebels has been recently atacking the zone.
- A coalition deployment supervises the route of the humanitarian convoy from a distance
- The objective of the tactical vignette is to prevent the hijack of such an humanitarian convoy.

Preventing the hijack of an aid convoy vignette

- Cloud 1: Company BEL
 - Platoon 1 and plantoon 2 BEL
 - Voice/data
- Cloud 2: Platoon 1 BEL
 - Voice/data
- Cloud 3: Pelotón 2 BEL
 - Voice/data
- Cloud 4: Company FR
 - Platoon FR
 - Voice/data
- Cloud 5:

de Catalunya

- Platoon GE
- Voice/data
- Cloud 6:
 - Convoy
- Cloud 7
 - Rebels

Possible frequency conflicts that we aim to reproduce and deal with

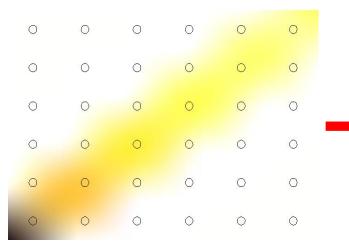
- Clouds 3, 4 and 5 operate in the same frequency channel in uncoordinated fashion.
- The rebels try to attack the frequency of operation of clouds 3, 4 and 5.
- The helicopter of cloud 4 has a counter-RCIED (Radio Controlled Improvised Explosive Device) which affects the frequency of operation of clouds 3 and 5

- Introduction to the project
- Scenarios and vignettes
- Routing protocol model
- Implementation Details
- Testbed setup
- Conclusions

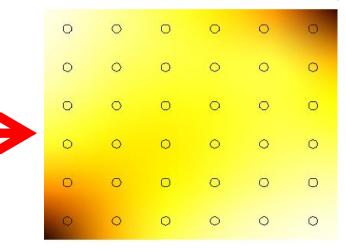
CTTC COGNITIVE NETWORKING

- We need cognitve routing approach which:
 - reduces to the minimum the control information exchange
 - takes decisions based on local information
 - quickly adapts to dynamic tactical environments
- We propose backpressure (BP) routing approach due to:
 - scalability,
 - low overhead,
 - maximization of resource usage in high mobility and dynamic wireless contexts,
 - low requirements in terms of state stored at nodes.

• *Neighbour Discovery*: BP does it, each node maintains neighbour tables.


• *Route dissemination*: BP does not need it, and this reduces significantly the overhead.

- Route calculation: BP does it, but at packet level.
- Route recovery/maintainence: not needed it.

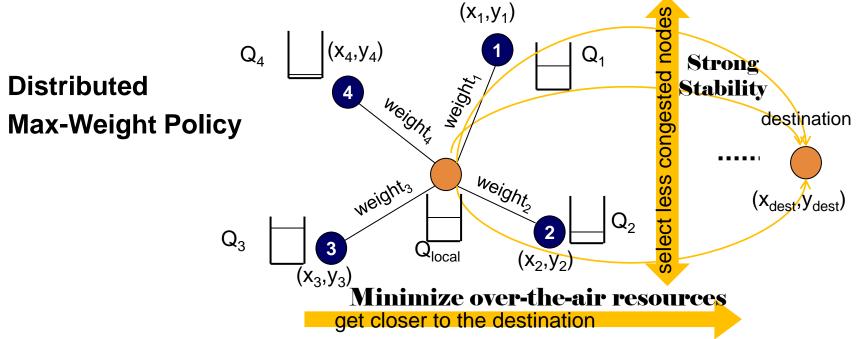

The Backpressure idea

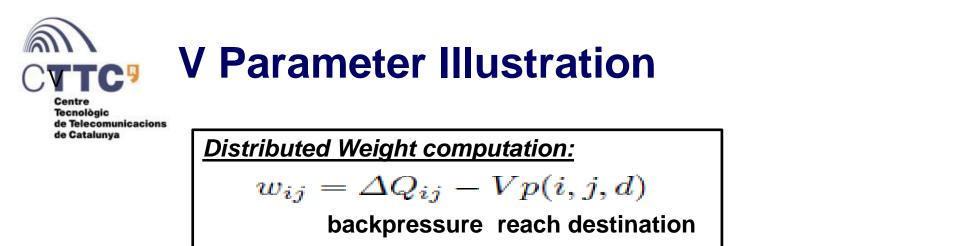
Centre Tecnològic de Telecomunicacions de Catalunya

Shortest Path Routing

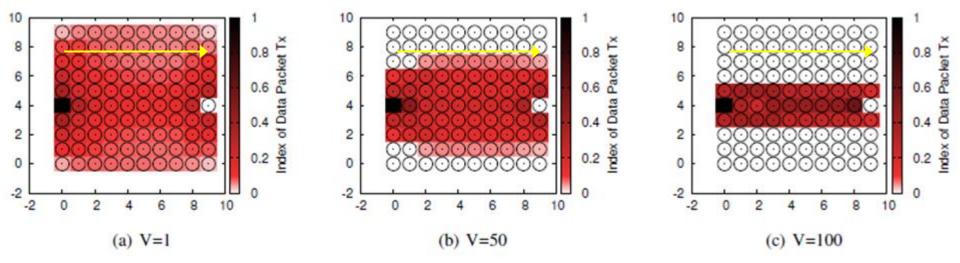
Backpressure Routing

Minimize a drift-plus-penalty function

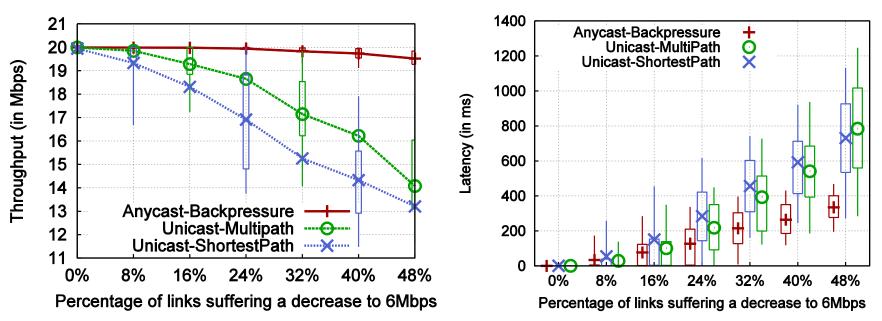

- Lyapunov drift $\Delta(t) \Delta(t) = L(t+1) L(t)$
 - L(t) function that measures network congestion
- Penalty p(t) quantifies the cost of performing routing decisions satisfying Δ(t) minimization
- Control Parameter V allows for appropriate trade-off between backlog reduction and penalty minimization


Distributed Max-Weight Policy

Centre Tecnològic de Telecomunicacions de Catalunya


The weight of a link (i,j) with a data packet to transmit to reach d is calculated as follows:

$$w_{ij} = \Delta Q_{ij} - Vp(i, j, d)$$



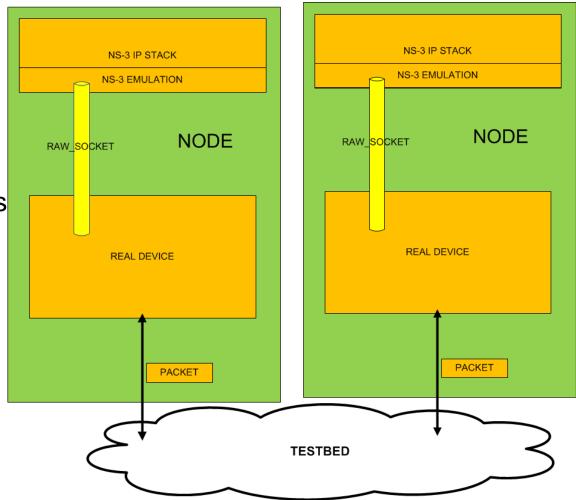
What is the role of the V parameter in practice?

Workload 20Mbps

Backpressure offers robustness under heterogeneous wireless link rates choosing higher rate links over low-rate links

Backpressure shows lower latencies since 1) longer paths only used under congestion 2) lower queuing latencies

- Introduction to the project
- Scenarios and vignettes
- The Protocol Model
- Implementation Details
- Testbed setup
- Conclusions


From simulation to rapid prototyping

- Protocol Implemented in Ns-3 simulator
 - Ns-3 is a quite accurate network simulator but still a simulator
- Ns-3 asset: Emulation Mode
 - You do not need to make double effort to test your schemes in simulations and in testbeds.
 - It allows the ns-3 simulator to send ns-3 packets to real physical devices, and to receive real (and ns-3) packets from physical devices.
 - •The protocol requires to manage data queues to take routing decisions and there are various implementation issues.

Ns-3 emulation mode

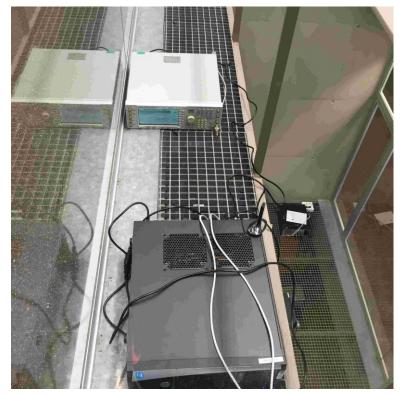
- Physical Nodes have one ns-3 process running
 - routing intelligence
- It allows executing ns-3 IP stack over physical devices implementing L2 functionalities
- ns-3 provides the interface with the real physical device
 - RAW sockets
 - to generate/receive/send packets from/to the real device
 - real devices on PROMISCUOUS mode

Ns-3 Emulation: Characteristics

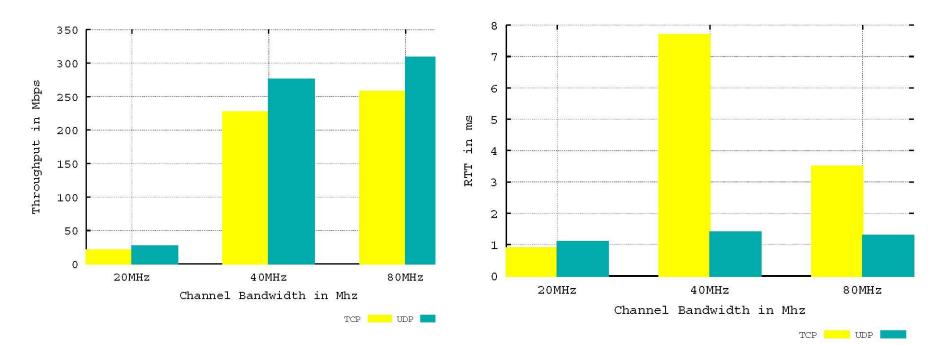
- ns-3 emulation is based on MAC spoofing
 - FdNetDevice avoids this way conflicts between virtual ns-3 IP stack (virtual MAC address) and real IP stack (real MAC address)
- SOCKET RAW captures all Ethernet packets
 - FdNetDevice sends to ns-3 stack the packets that have the specified ns-3 MAC address
 - Packets generated with ns-3 are sent with a source, and destination MAC addresses different than the real physical MAC address
 - Packets with the real source and destination MAC address are sent to the real node stack

- Introduction to the project
- Scenarios and vignettes
- Routing protocol model
- Implementation Details
- Testbed setup
- Conclusions

- The testbed consists of 15 nodes emulating soldiers of platoons.
- Each node accounts with 2 IEEE802.11ac cards for control and data communications, intra- and interplatoon.
 - chipset Atheros AR10XX
- An Agilent signal generator is used to generate jamming and other kind of co-channel signals.
- Nodes have installed Linux/GNU (Ubuntu 14.04 Desktop 64 bits).
- Network Time Protocol for node synchronization


- Driver and firmware of the cards is ath10k
- We substitute the original firmware with the one provided by Candela Technologies
 - It allows "ad-hoc" mode, which is fundamental to allow every node in the platoon network to be able to talk to all the other nodes
 - It allows for channels of 20 MHz, and also of 40 and 80 MHz.
 - It allows direct access to firmware source code.
 - With commands *iw* or *iwconfig*, we can easily change the channel, the bandwidth, the transmission power.

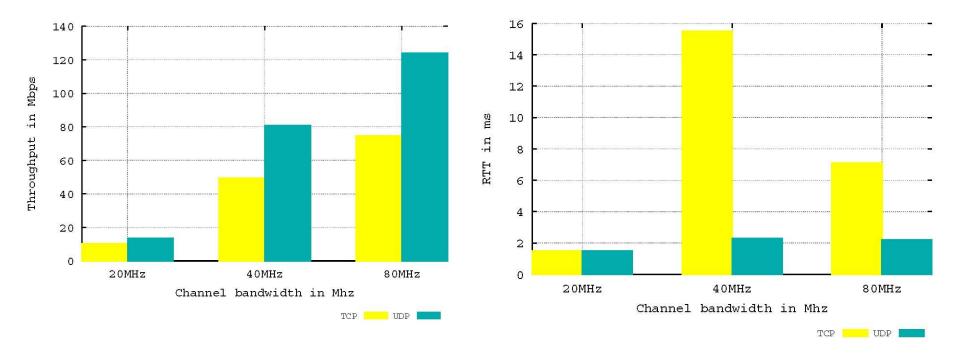
- TPC: We have tested that transmission power can be properly changed, by measuring the received power in a receiving node
- To activate DFS and TCP functionalities we need:
 - IEEE 802.11d: it is an amendment approved in 2001 to 802.11, which allows clients to automatically configure themselves to their local regulatory domain.
 - IEEE 802.11k: it is an amendment approved in 2007 to 802.11, to facilitate radio resource management and maintainance



- root@sc228:/home/monet# hostapd /etc/hostapd/hostapd-ac.conf Configuration file: /etc/hostapd/hostapd-ac.conf wlan2: interface state UNINITIALIZED->COUNTRY_UPDATE

- wlan2: interface state COUNTRY_UPDATE->HT_SCAN
- wlan2: interface state HT_SCAN->DFS
- wlan2: <u>DFS-CAC-START freq=5640 chan=128 sec c</u>han=-1, width=1, seg0=122, seg1=0, cac_time=60s
- wlan2: DFS-CAC-COMPLETED success=1 freq=5640 ht_enabled=0 chan_offset=0 chan_width=3 cf1=5610 cf2=0
- Using intertace wianz with nwador 04:r0:21:18:26:af and ssid "ATH10K"
- wlan2: interface state DFS->ENABLED
- wlan2: AP-ENABLED
- Wlan2: DFS-RADAR-DETECTED freq=5640 ht_enabled=0 chan_offset=0 chan_width=3 cf1=5610 cf2=0
- wlan2: DFS-NEW-CHANNEL Treq=5180 cnan=36 sec_chan=1
- wlan2: DFS-RADAR-DETECTED freq=5640 ht_enabled=0 chan_offset=0 chan_width=3 cf1=5610 cf2=0
- wlan2: DFS-RADAR-DETECTED freq=5640 ht_enabled=0 chan_offset=0 chan_width=3 cf1=5610 cf2=0

- wlan2: DFS-RADAR-DETECTED Freq-5640 Ht_enabled-0 chan_offset=0 chan_width=3 cf1=5610 cf2=0 wlan2: DFS-RADAR-DETECTED freq-5640 ht_enabled-0 chan_offset=0 chan_width=3 cf1=5610 cf2=0 wlan2: IEEE 802.11 driver had channel switch: freq=5180 ht=1, offset=1, width=3 (80 MHz), cf1=5210, cf2=0
- wlan2: AP-CSA-FINISHED Treq=5180 dTS=0


Traffic generated by *netperf*, *iperf*. Packets of 1500 bytes Latency is measured by *hping3* There are unexpected results

- T1: Packet P is received at PHY
- T2: Packet P has been processed by firmware and driver ath10k
- T3: ACK received at PHY
- T4: ACK has been processed by firmware and driver ath10k
 - Original firmware does not present this problem at 40 MHz.
 - At 20 MHz the behaviour is correct in both firmwares.

Time	msec
T1	0
T2	0,003
Т3	0,027
Τ4	3,303

- We are studying the dual use of WiFi technology for cognitive radio/networks technology in coalition deployments
- We have proposed to take advantage of rapid prototyping capabilities of ns-3
- We have shown some initial simulation results based on a backpressure routing approach
- We have setup the testbed and we are dealing with some implementation issues to move to prototyping